The research of transients of the fourth-order automatic control systems by the quadrature method

Authors

  • Йосип Іванович Стенцель East Ukrainian National University named after Volodymyr Dahl Pr. Soviet 59-a, Severodonetsk, Ukraine, 93400, Ukraine https://orcid.org/0000-0001-7170-437X
  • Олена Іванівна Проказа East Ukrainian National University named after Volodymyr Dahl Pr. Soviet 59-a, Severodonetsk, Ukraine, 93400, Ukraine
  • Костянтин Анатолійович Літвінов East Ukrainian National University named after Volodymyr Dahl Pr. Soviet 59-a, Severodonetsk, Ukraine, 93400, Ukraine https://orcid.org/0000-0003-3713-921X

DOI:

https://doi.org/10.15587/1729-4061.2015.39419

Keywords:

method, transient, system, control, quadrature, equation, accuracy, speed

Abstract

Modern transient analysis methods are approximate, which leads to significant control errors. It is shown that improving the accuracy and speed of automatic control systems, and providing optimal operation is possible using the quadrature method for the transient analysis. The fourth-order automatic control system, which is described by a linear differential equation with real and compatible complex roots was investigated. The influence of these roots on the first-quadrature time constants is shown. The methods for determining the first-quadrature time constants and transient analysis accuracy were described. The time constant, which is a multiplier at the first derivative of the first quadrature can be determined by the minimum space between the real RFR of the system and RFR of the first quadrature. The second quadrature can be determined by the difference between the real RFR and RFR, identified by the first quadrature. It is shown that for the fourth-order ACS, transition frequency of the second quadrature RFR is equal to the first quadrature frequency. Since the second quadrature is negligible, it can be neglected in many practical tasks. The main advantage of the quadrature method is the transient analysis using analytical formulas, used for second-order differential equations. Using the quadrature method is especially valuable for the software support of modern computer-integrated process control systems, in which close and complex method of inverse Laplace transform is typically used. Investigating the high-order control systems with delay and using the method for calculating the optimal regulator settings are practically important.

Author Biographies

Йосип Іванович Стенцель, East Ukrainian National University named after Volodymyr Dahl Pr. Soviet 59-a, Severodonetsk, Ukraine, 93400

Professor, Doctor of technical sciences, head of the department

The department of computer-integrated control systems

Олена Іванівна Проказа, East Ukrainian National University named after Volodymyr Dahl Pr. Soviet 59-a, Severodonetsk, Ukraine, 93400

Candidate of technical science, Associate professor

The department of computer-integrated control systems

Костянтин Анатолійович Літвінов, East Ukrainian National University named after Volodymyr Dahl Pr. Soviet 59-a, Severodonetsk, Ukraine, 93400

PhD student

The department of computer-integrated control systems

References

  1. Perov, V. L., Egorov, A. F., Habarin, A. J. (1981). Upravlenie himiko-tehnologicheskimi sistemami. Moscow: MHTI im. D.I.Mendeleeva, 52.
  2. Obnovlens'kij, P. A., Korotkov, P. A., Gurevich, A. L., Il'in, B. V. (1965). Osnovy avtomatiki i avtomatizacii himicheskih proizvodstv. Moscow-Lviv: Himija, 608.
  3. Anisimov, I. V. (1967). Osnovy avtomaticheskogo upravlenija tehnologicheskimi processami neftehimicheskoj i neftepererabatyvajushhej promyshlennosti. Lviv: Himija, 123.
  4. Taganov, I. N. (1979). Modelirovanie processov masso- i jenergoperenosa. Lviv: Himija, 203.
  5. Stencel', J. І. (1993). Matematichne modeljuvannja tehnologіchnih ob’єktіv keruvannja. Kiev: ІSDO, 328.
  6. Stencel', J. І., Porkujan, O. V. (2010). Avtomatizacіja tehnologіchnih procesіv hіmіchnih virobnictv. Lugans'k: vid-vo Shіdnoukr. nac. un-tu іm. V. Dalja, 300.
  7. Makarov, I. M., Menskij, B. M. (1982). Linejnye avtomaticheskie sistemy. Moscow: Mashinostroenie, 504.
  8. Besekerskij, V. A., Popov, E. P. (1972). Teorija sistem avtomaticheskogo regulirovanija. Moscow: Nauka, 768.
  9. Stencel' J. І. (1995). Avtomatizacіja tehnologіchnih procesіv hіmіchnih virobnictv. Kiev: ІSDO, 360.
  10. Stencel', J. І., Kirichuk, І. E., Savel'єva O. V. (1997). Rozrahunok perehіdnih procesіv skladnih sistem reguljuvannja metodom kvadratur. Nauk.-tehn. zbіrnik «Avtomatizacіja tehnologіchnih procesіv ta promislova ekologіja», 1, 2–5.
  11. Voronov, A. A. (1980). Osnovy teorii avtomaticheskogo upravlenija. Moscow: Jenergija, 1, 312.
  12. Fel'baum, A. A., Butkovskij, A. G. (1971). Metody teorii avtomaticheskogo upravlenija. Moscow: Nauka, 743.
  13. Netushil, A. V. (1983). Teorija avtomaticheskogo upravlenija. Moscow: Vysshaja shk, 488.
  14. Solodovnikov, V. V., Topcheev, Ju. I., Krutikova, G. V. (1955). Chastotnyj metod postroenija perehodnyh processov. Moscow: GITTL, 196.
  15. Krutov, V. I., Danilov, F. M., Kuz'mik, P. K. et. al. (1984). Osnovy teorii avtomaticheskogo regulirovanija. Moscow: Mashinostroenie, 368.

Published

2015-04-20

How to Cite

Стенцель, Й. І., Проказа, О. І., & Літвінов, К. А. (2015). The research of transients of the fourth-order automatic control systems by the quadrature method. Eastern-European Journal of Enterprise Technologies, 2(2(74), 41–49. https://doi.org/10.15587/1729-4061.2015.39419