Modification of the properties of porous silicon for solar cells by hydrogenation

Authors

  • Валерій Юрійович Єрохов Lviv Polytechnic National University Bandera Str., 12, Lviv, Ukraine, 79013, Ukraine https://orcid.org/0000-0002-9699-7110
  • Анатолій Олександрович Дружинін Lviv Polytechnic National University Bandera Str., 12, Lviv, Ukraine, 79013, Ukraine
  • Ольга Валерієвна Єрохова National Academy of Sciences of Ukraine 3-b, Naukova Str., 79060, L'viv, Ukraine, Ukraine https://orcid.org/0000-0002-0969-3179

DOI:

https://doi.org/10.15587/1729-4061.2015.40067

Keywords:

solar cell, porous silicon, photoluminescence, electrochemical hydrogenation, mass spectra

Abstract

The prospects of creating a solar cell with antireflection coating on porous silicon were shown, for which the process of electrochemical hydrogenation of porous silicon on p-type silicon substrates with a resistivity of 0.1...10 Om×sm and substrates with the formed emitter junction n+-p was studied. For the process of electrochemical hydrogenation of porous silicon at its cathodic polarization, potentiostatic current-voltage curves of the system Pt (anode) - electrolyte - «porous silicon/silicon» (cathode) for electrolytes with different chemical composition were studied. A comparison of the photoluminescence spectra of as-grown, chemically processed and hydrogenated porous layers has shown that hydrogen saturation of the porous silicon surface during cathodic polarization increases photoluminescence intensity to a level typical for samples that previously have passed special chemical treatment. The research results of luminescent properties of hydrogenated porous silicon layers can be interpreted by an increase in photoluminescence intensity of hydrogenated porous silicon layers. These results are confirmed by experiments on the secondary ion mass spectrometer (SIMS), where, after hydrogenation, we can see a steady intensity (number of the read pulses) of secondary ions of the multicrystalline Baysix type silicon substrate surface in static mode with the presence of H2+ ions. Through the model representation of the silicon PEC structure with the antireflection coating based on the porous silicon layer, the solar cell was developed and its parameters, which have shown that the conversion efficiency of the SC with hydrogenated porous silicon is by 1.28 times higher (16.1%) than without it (12 6%) were measured. 

Author Biographies

Валерій Юрійович Єрохов, Lviv Polytechnic National University Bandera Str., 12, Lviv, Ukraine, 79013

Doctor of technical sciences, Associate Professor

Department of Semiconductor Electronics 

Анатолій Олександрович Дружинін, Lviv Polytechnic National University Bandera Str., 12, Lviv, Ukraine, 79013

Professor, D.Sc.

Department of Semiconductor Electronics

Ольга Валерієвна Єрохова, National Academy of Sciences of Ukraine 3-b, Naukova Str., 79060, L'viv, Ukraine

Graduate student

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics

References

  1. Huang, Y. M., Ma, Q.-L., Meng, M. (2011). Porous silicon based solar cells, Materials Science Forum, 663-665, 836–839. doi: 10.4028/www.scientific.net/msf.663-665.836
  2. Weber, K. J., Blakers, A. W., Stocks, M. J., Thompson, A. (2003). Silicon liquid phase epitaxy for epilift solar cells, Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference, 2, 1265–1267.
  3. Bilyalov, R. R., Lüdemann, R., Wettling, W., Stalmans, L., Poortmans, J., Nijs, J. et. al. (2000). Multicrystalline silicon solar cells with porous silicon emitter. Solar Energy Materials and Solar Cells, 60 (4), 391–420. doi: 10.1016/s0927-0248(99)00102-6
  4. Fang, W., Changshui, C., Huili, H. (2011). Analysis of sunlight loss for femtosecond laser microstructed silicon and its solar cell efficiency, Applied Physics A, 103 (4), 977–982. doi: 10.1007/s00339-010-6095-0
  5. Svavarsson, H. G., Danielsson, D. M., Gudmundsson, J. T. (2008). Thin film silicon for solar cell application grown from liquid phase on metallurgical grade silicon. 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 2221.
  6. Muller, M., Kopecek, R., Fath, P., Zahedi, C., Peter, K. (2003). Silicon LPE on substrates from metallurgical silicon feedstock for large scale production, Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference, 2, 1221–1224.
  7. Jinsu, Y., Gwonjong, Y., Junsin, Y. (2009). Black surface structures for crystalline silicon solar cells. Materials Science and Engineering, B, 159-160, 333–337. doi: 10.1016/j.mseb.2008.10.019
  8. Foil, Н., Christophersen, М., Carstensen, J.,. Hasse, G. (2002). Formation and application of porous silicon, Materials Science and Engineering R, 39, 93–141.
  9. Salman, K. A., Omar, K., Hassan, Z. (2011). The effect of etching time of porous silicon on solar cell performance. Superlattices and Microstructures, 50 (6), 647–658. doi: 10.1016/j.spmi.2011.09.006
  10. Yerokhov, V. Yu., Melnyk, I. I., Gasko, L. Z., Iznin, O. I. (1998). Porous silicon hydrogenizing for solar cells, In Proc. of First World Conference "Porous Semiconductors: Science and Technology”, Mallorca, Spain, 169.
  11. Honda, S., Mates, T., Ledinsky, M. (2005). Effect of hydrogen passivation on polycrystalline silicon thin films. Thin solid films, 487 (1-2), 152–156. doi: 10.1016/j.tsf.2005.01.056
  12. Yerokhov, V. Yu, Melnyk, I. I., Bogdanovsky, N., Iznin, O. I. (1998). Hydrogenated porous silicon in solar cells structure, In Proc. of 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, Austria, 1256–1259.
  13. Bertoni, M. I., Udelson, S., Newman, B. K., Bernardis, S. et. al. (2010). Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells, In Proc. of the 35th IEEE Photovoltaic Specialists Conference, 345. doi: 10.1109/pvsc.2010.5616904
  14. Lavine, J. M., Sawan, P. S., Shieh, T. Y., Bellezza, A. J. (1993). Role of Si-H and Si-H2 in photoluminescence of porous Si. Applied Physics Letters, 62 (10), 1099–1101. doi: 10.1063/1.108754
  15. Banerjee, S., Narasimhan, K. L., Sardesai, A. (1994). Role of Hydrogen- and oxygen-terminated surfaces in the luminescence of porous silicon. Physical Review B, 49 (4), 2915–2918. doi: 10.1103/physrevb.49.2915
  16. Druzhynin, A. O., Yerokhov, V. Ju., Berchenko, N. N. (2014). Study of surface multicrystalline substrates silicon saturated aqueous by mass spectroscopy. Eastern-European Journal of Enterprise Technologies, 1/5(67), 34–37. doi: 10.15587/1729-4061.2014.21053

Published

2015-04-16

How to Cite

Єрохов, В. Ю., Дружинін, А. О., & Єрохова, О. В. (2015). Modification of the properties of porous silicon for solar cells by hydrogenation. Eastern-European Journal of Enterprise Technologies, 2(5(74), 17–23. https://doi.org/10.15587/1729-4061.2015.40067