Modification of the properties of porous silicon for solar cells by hydrogenation
DOI:
https://doi.org/10.15587/1729-4061.2015.40067Keywords:
solar cell, porous silicon, photoluminescence, electrochemical hydrogenation, mass spectraAbstract
The prospects of creating a solar cell with antireflection coating on porous silicon were shown, for which the process of electrochemical hydrogenation of porous silicon on p-type silicon substrates with a resistivity of 0.1...10 Om×sm and substrates with the formed emitter junction n+-p was studied. For the process of electrochemical hydrogenation of porous silicon at its cathodic polarization, potentiostatic current-voltage curves of the system Pt (anode) - electrolyte - «porous silicon/silicon» (cathode) for electrolytes with different chemical composition were studied. A comparison of the photoluminescence spectra of as-grown, chemically processed and hydrogenated porous layers has shown that hydrogen saturation of the porous silicon surface during cathodic polarization increases photoluminescence intensity to a level typical for samples that previously have passed special chemical treatment. The research results of luminescent properties of hydrogenated porous silicon layers can be interpreted by an increase in photoluminescence intensity of hydrogenated porous silicon layers. These results are confirmed by experiments on the secondary ion mass spectrometer (SIMS), where, after hydrogenation, we can see a steady intensity (number of the read pulses) of secondary ions of the multicrystalline Baysix type silicon substrate surface in static mode with the presence of H2+ ions. Through the model representation of the silicon PEC structure with the antireflection coating based on the porous silicon layer, the solar cell was developed and its parameters, which have shown that the conversion efficiency of the SC with hydrogenated porous silicon is by 1.28 times higher (16.1%) than without it (12 6%) were measured.
References
- Huang, Y. M., Ma, Q.-L., Meng, M. (2011). Porous silicon based solar cells, Materials Science Forum, 663-665, 836–839. doi: 10.4028/www.scientific.net/msf.663-665.836
- Weber, K. J., Blakers, A. W., Stocks, M. J., Thompson, A. (2003). Silicon liquid phase epitaxy for epilift solar cells, Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference, 2, 1265–1267.
- Bilyalov, R. R., Lüdemann, R., Wettling, W., Stalmans, L., Poortmans, J., Nijs, J. et. al. (2000). Multicrystalline silicon solar cells with porous silicon emitter. Solar Energy Materials and Solar Cells, 60 (4), 391–420. doi: 10.1016/s0927-0248(99)00102-6
- Fang, W., Changshui, C., Huili, H. (2011). Analysis of sunlight loss for femtosecond laser microstructed silicon and its solar cell efficiency, Applied Physics A, 103 (4), 977–982. doi: 10.1007/s00339-010-6095-0
- Svavarsson, H. G., Danielsson, D. M., Gudmundsson, J. T. (2008). Thin film silicon for solar cell application grown from liquid phase on metallurgical grade silicon. 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 2221.
- Muller, M., Kopecek, R., Fath, P., Zahedi, C., Peter, K. (2003). Silicon LPE on substrates from metallurgical silicon feedstock for large scale production, Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference, 2, 1221–1224.
- Jinsu, Y., Gwonjong, Y., Junsin, Y. (2009). Black surface structures for crystalline silicon solar cells. Materials Science and Engineering, B, 159-160, 333–337. doi: 10.1016/j.mseb.2008.10.019
- Foil, Н., Christophersen, М., Carstensen, J.,. Hasse, G. (2002). Formation and application of porous silicon, Materials Science and Engineering R, 39, 93–141.
- Salman, K. A., Omar, K., Hassan, Z. (2011). The effect of etching time of porous silicon on solar cell performance. Superlattices and Microstructures, 50 (6), 647–658. doi: 10.1016/j.spmi.2011.09.006
- Yerokhov, V. Yu., Melnyk, I. I., Gasko, L. Z., Iznin, O. I. (1998). Porous silicon hydrogenizing for solar cells, In Proc. of First World Conference "Porous Semiconductors: Science and Technology”, Mallorca, Spain, 169.
- Honda, S., Mates, T., Ledinsky, M. (2005). Effect of hydrogen passivation on polycrystalline silicon thin films. Thin solid films, 487 (1-2), 152–156. doi: 10.1016/j.tsf.2005.01.056
- Yerokhov, V. Yu, Melnyk, I. I., Bogdanovsky, N., Iznin, O. I. (1998). Hydrogenated porous silicon in solar cells structure, In Proc. of 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, Austria, 1256–1259.
- Bertoni, M. I., Udelson, S., Newman, B. K., Bernardis, S. et. al. (2010). Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells, In Proc. of the 35th IEEE Photovoltaic Specialists Conference, 345. doi: 10.1109/pvsc.2010.5616904
- Lavine, J. M., Sawan, P. S., Shieh, T. Y., Bellezza, A. J. (1993). Role of Si-H and Si-H2 in photoluminescence of porous Si. Applied Physics Letters, 62 (10), 1099–1101. doi: 10.1063/1.108754
- Banerjee, S., Narasimhan, K. L., Sardesai, A. (1994). Role of Hydrogen- and oxygen-terminated surfaces in the luminescence of porous silicon. Physical Review B, 49 (4), 2915–2918. doi: 10.1103/physrevb.49.2915
- Druzhynin, A. O., Yerokhov, V. Ju., Berchenko, N. N. (2014). Study of surface multicrystalline substrates silicon saturated aqueous by mass spectroscopy. Eastern-European Journal of Enterprise Technologies, 1/5(67), 34–37. doi: 10.15587/1729-4061.2014.21053
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Анатолій Олександрович Дружинін, Валерій Юрійович Єрохов, Ольга Валерієвна Єрохова
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.