Multi criteria optimization of human resource management problems based on the modified topsis method

Authors

  • Масума Гусейн кызы Мамедова Institute of Information Technology of the National Academy of Sciences of Azerbaijan st. B. Vahabzada, 9, Baku, Azerbaijan, Az1141, Azerbaijan
  • Зарифа Гасым кызы Джабраилова Institute of Information Technology of the National Academy of Sciences of Azerbaijan st. B. Vahabzada, 9, Baku, Azerbaijan, Az1141, Azerbaijan

DOI:

https://doi.org/10.15587/1729-4061.2015.40533

Keywords:

management, human resources, decision making, fuzzy environment, intelligent technologies, multi-criteria optimization

Abstract

With the development of an innovative economy, human resources are transformed into the main strategic resource, providing long-term competitiveness and achievement of the organizational goals. Therefore, developing new conceptual approaches and promising technologies of human resource management is of particular relevance and practical significance.

The paper highlights the specific features of human resource management (HRM) problems, allowing to identify them as the problems of multi-criteria analysis and decision-making in a fuzzy environment. A generalized conceptual model of decision-making in HRM problems was proposed. It is proved that for increasing the efficiency and transparency of decisions in the human resource management, using multi-criteria optimization based on the TOPSIS method is appropriate, and the advantages of the latter were shown. A TOPSIS modification, which lies in integrating an additional component that provides a calculation based on the hierarchy analysis method of expert competence coefficients into the decision-making algorithm was proposed. Using the methods of TOPSIS and scoring on the example of the employment problem, experimental calculations for ranking alternatives, having demonstrated the effectiveness of the proposed approach were carried out.

Author Biographies

Масума Гусейн кызы Мамедова, Institute of Information Technology of the National Academy of Sciences of Azerbaijan st. B. Vahabzada, 9, Baku, Azerbaijan, Az1141

Doctor of Technical Sciences, Professor

Зарифа Гасым кызы Джабраилова, Institute of Information Technology of the National Academy of Sciences of Azerbaijan st. B. Vahabzada, 9, Baku, Azerbaijan, Az1141

PhD, associate professor

References

  1. Cole, G. A. (2002). Personnel and Human Resource Management. Wadsworth: Thomson Learning. 5 edition, 448.
  2. Spencer, L. M., Spencer, S. M. (2008). Competence at work models for superior performance. Wiley India Pvt. Limited, 384.
  3. Bazarov, T. Ju. (2009). Upravlenie personalom. Praktikum. Moscow: Juniti-Dana, 240.
  4. Makarova, I. K. (2007). Upravlenie chelovecheskimi resursami. Pjat' urokov jeffektivnogo HR-menedzhmenta. Moscow: Delo., 232. Available at: http://www.alleng.ru/d/manag/man094.htm
  5. Armstrong, M.; Mordovin, S. K. (Ed.) (2005). Praktika upravlenija chelovecheskimi resursami. 8-e izdanie. SPb.: Piter.
  6. Ivancevich, Dzh. M., Lobanov, A. A. (2004). Chelovecheskie resursy upravlenija. Moscow: Aspekt Press, 245.
  7. Trahtengerc, Je. A. (2001). Vozmozhnosti i realizacija komp'juternyh sistem podderzhki prinjatija reshenij. Izvestija RAN. Teorija i sistemy upravlenija, 3, 86–103.
  8. Larichev, O. I. (2002). Teorija i metody prinjatija reshenij. Uchebnik. Second edition. Moscow: Logos, 392.
  9. Mikoni, S. V. (2009). Mnogokriterial'nyj vybor na konechnom mnozhestve al'ternativ. SPb.: izd. Lan', 272.
  10. Orlovskij, S. A. (1981). Problemy prinjatija reshenij pri nechetkoj ishodnoj informacii. Moscow: Nauka, 212.
  11. Mamedova, M. G., Dzhabrailova, Z. G. (2012). Nechetkaja mnogokriterial'naja model' podderzhki prinjatija reshenij v zadachah upravlenija personalom. Problemy informacionnyh tehnologij, 2, 37–46. Available at: http://jpit.az/storage/files/article/1736718f0ccee21e4cbd816d9dcb28d2.pdf
  12. Mamedova, M. G. (1997). Prinjatie reshenij na osnove baz znanij s nechetkoj reljacionnoj strukturoj. Baku, Jelm, 296.
  13. Wang, Y.-J., Lee, H.-S. (2007). Generalizing TOPSIS for fuzzy multiple-criteria group decision-making. Computers & Mathematics with Applications, 53 (11), 1762–1772. doi: 10.1016/j.camwa.2006.08.037
  14. Robertson, I. T., Smith, M. (2001). Personnel selection. Journal of Occupational and Organizational Psychology, 74 (4), 441–472. doi: 10.1348/096317901167479
  15. Akhlagh, E. (2011). A rough-set based approach to design an expert system for personnel selection. World Academy of Science, Engineering and Technology, 54, 202‑205. Available at: http://waset.org/Publications/a-rough-set-based-approach-to-design-an-expert-system-for-personnel-selection/14092
  16. Dursun, M., Karsak, E. E. (2010). A fuzzy MCDM approach for personnel selection. Expert Systems with Applications, 37 (6), 4324–4330. doi: 10.1016/j.eswa.2009.11.067
  17. Güngör, Z., Serhadlıoğlu, G., Kesen, S. E. (2009). A fuzzy AHP approach to personnel selection problem. Applied Soft Computing, 9 (2), 641–646. doi: 10.1016/j.asoc.2008.09.003
  18. Kelemenis, A., Askounis, D. (2010). A new TOPSIS-based multi-criteria approach to personnel selection. Expert Systems with Applications, 37 (7), 4999–5008. doi: 10.1016/j.eswa.2009.12.013
  19. Nobari, S. (2011). Design of fuzzy decision support system in employee recruitment. Journal of Basic and Applied Scientific Research, 1 (11), 1891–1903.
  20. Chien, C.-F., Chen, L.-F. (2008). Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry. Expert Systems with Applications, 34 (1), 280–290. doi: 10.1016/j.eswa.2006.09.003
  21. Chen, P.-C. (2009). A Fuzzy Multiple criteria decision making model in employee recruitment. IJCSNS International Journal of Computer Science and Network Security, 9 (7), 113–117.
  22. Kofman, A. (1982). Vvedenie v teorii nechetkih mnozhestv. Moscow: Radio i svjaz', 432.
  23. Zadeh, L. A. (1965). Fuzzy Sets. Information and control, 8 (3), 335‑338.
  24. Mamedova, M. G., Dzhabrailova, Z. G. (2004). Nechetkij logicheskij podhod zadache ocenki kadrovogo potenciala. Menedzhment v Rossii i za rubezhom, 5, 111‑117. Available at: http://mevriz.ru/annotations/2004/5/
  25. Mammadova, M., Jabrailova, Z., Nobari, S. (2012). Application of TOPSIS method in support of decisions made in staff management issues. IV International Conference “Problems of Cybernetics and Imformatics” (PCI-2012), 195–198. Available at: http://www.pci2012.science.az/8/11.pdf doi: 10.1109/icpci.2012.6486485
  26. Mammadova, M., Jabrayilova, Z. (2014). Application of Fuzzy Optimization Method in Decision-Making for Personnel Selection. Intelligent Control and Automation, 5 (4), 190–204. doi: 10.4236/ica.2014.54021
  27. Saaty, T. L., Cho, Y. (2001). The decision by the US Congress on China's trade status: A multicriteria analysis. Socio-Economic Planning Sciences, 35 (6), 243‑252. doi: 10.1016/s0038-0121(01)00016-7
  28. Belton, V., Stewart, T. (2002). Multiple criteria decision analysis: An Integrated Approuch. Kluwer Academic Publishers, Massachusetts, 372. doi: 10.1007/978-1-4615-1495-4
  29. Mammadova, M. G., Jabrayilova, Z. Q. (2007). Methods of Family Income estimation in the targeting social Assistance System. Appl.Comput.Math., 6 (1), 80‑87. Available at: http://acmij.az/view.php?lang=az&menu=journal&id=240
  30. Mammadova, M. H., Jabrayilova, Z. Q., Mammadzada, F. R. (2014). Fuzzy Decision-Making Support Methods for the Selection of IT- Professionals. International Journal of Engineering and Innovative Technology (IJEIT), 3 (7), 169‑175. http://ijeit.com/Vol%203/Issue%207/IJEIT1412201401_31.pdf
  31. Neumann, J. V., Morgenstern, O. (2007). Theory of games and economic behavior, One of Princeton University presses. Notable Centenary Titles, 776 p. doi: 10.1515/9781400829460
  32. Hwang, C. L., Yoon, K. (1981). Multiple attributes decision making methods and applications. Heidelberg, Berlin: Springer.
  33. Karelin, V. P. (2014). Modeli i metody predstavlenija znanij i vyrabotki reshenij v intellektual'nyh informacionnyh sistemah s nechetkoj logikoj. Vestnik TIUJe, Taganrog, 1, 75‑82.
  34. Zadeh, L. A. (1996). Fuzzy Logic = Computing with Words // IEEE Transactions on Fuzzy Systems, 4 (2), 103‑111.
  35. Zade, L. A. (1976). Ponjatie lingvisticheskoj peremennoj i ego primenenie k prinjatiju priblizhennyh reshenij. Moscow: Mir.
  36. Chen, C.-T., Lin, C.-T., Huang, S.-F. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. International Journal of Production Economics, 102 (2), 289–301. doi: 10.1016/j.ijpe.2005.03.009
  37. Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114 (1), 1–9. doi: 10.1016/s0165-0114(97)00377-1
  38. Saati, T. L. (1993). Prinjatie reshenij. Metod analiza ierarhij. Moscow: Radio i svjaz', 320.
  39. Nogin, V. D. (2007). Prinjatie reshenij pri mnogih kriterijah. SPb.:, 103.
  40. Hsu, H.-M., Chen, C.-T. (1997). Fuzzy credibility relation method for multiple criteria decision-making problems. Information Sciences, 96 (1-2), 79–91. doi: 10.1016/s0020-0255(96)00153-3
  41. Jabrailova, Z. G., Nobari, S. M. (2011). Processing methods of information about the importance of the criteria in the solution of personnel management problems and contradiction detection. Problems of information technology, 2, 57–66. Available at: http://jpit.az/storage/files/article/8a78f78a95641546667c863d448bfa7d.pdf

Published

2015-04-23

How to Cite

Мамедова, М. Г. к., & Джабраилова, З. Г. к. (2015). Multi criteria optimization of human resource management problems based on the modified topsis method. Eastern-European Journal of Enterprise Technologies, 2(4(74), 48–62. https://doi.org/10.15587/1729-4061.2015.40533

Issue

Section

Mathematics and Cybernetics - applied aspects