ANALYSIS OF MULTIFRACTAL PROPERTIES OF CHAOTIC MAPS

Authors

  • Ludmila Olegovna Kirichenko Kharkiv National University of radioelectronics pr. Lenina,14, Kharkiv, Ukraine, 61166., Ukraine
  • Nadiia Viktorivna Ostroverkh Kharkiv National University of radioelectronics pr. Lenina,14, Kharkiv, Ukraine, 61166., Ukraine
  • Anna Vyacheslavovna Timko Kharkiv National University of radioelectronics pr. Lenina,14, Kharkiv, Ukraine, 61166., Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2012.4170

Keywords:

chaotic dynamic, system’s attractor, multifractal, the RR-intervals.

Abstract

In this paper a numerical investigation of multifractal properties of the attractors of nonlinear discrete systems for diverse chaotic regimes is carried out. Also a multifractal analysis of RR-interval’s sequences of human heart rate was conducted before and after using a drugs.

Author Biographies

Ludmila Olegovna Kirichenko, Kharkiv National University of radioelectronics pr. Lenina,14, Kharkiv, Ukraine, 61166.

Ph.D., Associate professor

Department of Applied mathematics

Nadiia Viktorivna Ostroverkh, Kharkiv National University of radioelectronics pr. Lenina,14, Kharkiv, Ukraine, 61166.

Student

Department of Applied mathematics

Anna Vyacheslavovna Timko, Kharkiv National University of radioelectronics pr. Lenina,14, Kharkiv, Ukraine, 61166.

Student

Department of Applied mathematics

References

  1. Мандельброт, Б. Фрактальная геометрия природы [Текст] / Б. Мандельброт – Москва–Ижевск: Институт компьютерных исследований, 2002. – 656 с.
  2. Riedi, R.H. Multifractal processes / Ed. by Doukhan P., Oppenheim G., Taqqu M.S. Long Range Dependence: Theory and Applications, P. 625–715, Birkhuser. 2002.
  3. Федер, Е. Фракталы [Текст]/ Е. Федер – М.: Мир, 1991. – 254 с.
  4. Philippe F. Is there chaos in the brain? Concepts of nonlinear dynamics and methods of investigation / Philippe F., Henri K. // Life Sciences – 2001.-324:773–793.
  5. Hoyer D., Nonlinear analysis of heart rate and respiratory dynamics / Hoyer D, Schmidt K, Bauer R, Zwiener U, Kohler M, Luthke B, Eiselt M. // IEEE Engineering in Medicine and Biology Magazine - 1997;16:31–39.
  6. Мун, Ф., Хаотические колебания / Мун Ф. - М.: Мир, 1990.
  7. Шустер, Г. Детерминированный хаос: Введение [Текст]/ Шустер Г. -М.:Мир, 1988.
  8. Patrick Flandrin. Scale Invariance and Wavelets / Patrick Flandrin, Paulo Gonзalves and Patrice Abry in Scaling, Fractals and Wavelets. Ed. by P. Abry, P. Gonçalves, J. Lévy Véhel. John Wiley & Sons, London, - 2009.
  9. Божокин, С.В. Фракталы и мультифракталы [Текст]/ С.В. Божокин, Д. А. Паршин. – Ижевск: НИЦ «Регулярпая и хаотическая динамика». – 2001. – 128 с.
  10. Kantelhardt W. Fractal and Multifractal Time Series – 2008: [Электронный ресурс]- Режим доступа: http://arxiv.org/abs/08-04.0747.
  11. Малла, С. Вэйвлеты в обработке сигналов [Текст]/ Малла С. - М.: Мир. 2005. – 671 с.
  12. Павлов, А.Н. Мультифрактальный анализ сигналов [Текст]/ А.Н. Павлов, В.С. Анищенко // Известия Саратовского университета. Серия «Физика». - 2007. -Т. 7. -Вып. 1.-С.3-25.
  13. PhysioNet: the research resource for complex physiologic signals [Электронный ресурс]- Режим доступа: www.physionet.org.

Published

2012-06-01

How to Cite

Kirichenko, L. O., Ostroverkh, N. V., & Timko, A. V. (2012). ANALYSIS OF MULTIFRACTAL PROPERTIES OF CHAOTIC MAPS. Eastern-European Journal of Enterprise Technologies, 3(9(57), 53–58. https://doi.org/10.15587/1729-4061.2012.4170

Issue

Section

Information and controlling system