Anti-sway control method with dynamic correction of the suspension length for ship-to-shore cranes

Authors

  • Виктор Владимирович Бушер Odessa National Polytechnic University 1, ave. Shevchenko, Odessa, Ukraine, 65044, Ukraine https://orcid.org/0000-0002-3268-7519
  • Николай Иосифович Муха Odessa National Maritime Academy 8, Didrikhson str., Odessa, Ukraine, 65029, Ukraine https://orcid.org/0000-0002-2923-6733
  • Анатолий Иванович Шестака Odessa National Maritime Academy 8, Didrikhson str., Odessa, Ukraine, 65029, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.43405

Keywords:

anti-sway, movement mechanism observer with pull-up ropes, suspension length correction

Abstract

The analysis of the ship-to-shore crane behavior during the horizontal load movement in two coordinates and a simultaneous load lowering or hoisting was performed. For this operation mode, anti-sway control method for the load, suspended by a rope, which is invariant to the ratio of the masses and hoisting speed was proposed. The analysis of the interaction of technological mechanisms with the pull-up rope drives, suppressing load vibrations, caused by disturbance and measurement errors of the load parameters was carried out. By including the movement mechanism observer with the pull-up rope drives and the correction unit of the rope length and lowering/hoisting speed in the control system, a control method that is insensitive to the suspension length measurement errors without using load position sensors was proposed. As a result, a combined method of coordinated drive control to effectively suppress load vibrations during starting/braking of horizontal movement mechanisms, when using which there are no vibrations in steady-state conditions was developed. This allows to position the load at given points and as a result - include the crane in the automated container terminals.

Author Biographies

Виктор Владимирович Бушер, Odessa National Polytechnic University 1, ave. Shevchenko, Odessa, Ukraine, 65044

Associate Professor, Doctor of Technical Sciences

Department of electromechanical systems with computer control

Николай Иосифович Муха, Odessa National Maritime Academy 8, Didrikhson str., Odessa, Ukraine, 65029

Associate professor, Candidate of technical science

Department of Ship’s Electromechanics and Electrical Engineering

Анатолий Иванович Шестака, Odessa National Maritime Academy 8, Didrikhson str., Odessa, Ukraine, 65029

Senior Lecturer

Department of Ship’s Electromechanics and Electrical Engineering

References

  1. Busher, V. V., Melnikova, L. V. (2000). Analiz i sravnenie razlichnyih sposobov dempfirovaniya kolebaniy podveshennogo na kanate gruza [Analysis and Comparison of Different Methods of Damping Suspended on a Rope Cargo]. Problemyi Sozdaniya Novyih Mashin i Tehnologiy. Nauchnyie Trudyi KGPI, Kremenchug, 1/2000 (8), 236–240. Available at: http://aep.at.ua/load/1-1-0-353 [in Russian]
  2. Gerasimyak, R. P., Busher, V. V., Melnikova, L. V. (2000). Matematicheskaya model elektromehanicheskoy sistemy mehanizma peredvizheniya krana s podveshennym gruzom pri optimalnom upravlenii [Mathematical Model of the Crane Electromechanical System with a Suspended load in the Optimal Control]. Vestnik Hersonskogo Gosudarstvennogo Tehniches-kogo Univesiteta, 2(8), 74–76. [in Russian]
  3. Busher, V., Melnikova, L., Shestaka, A. (2015). Optimizatsiya upravleniya elektroprivodami konteynernogo peregruzhatelya pri sovmestnoy rabote mehanizmov [Optimization control of container cranes electric drives at coordinated operation of the mechanisms]. Elektrotehnicheskie i kompyuternyie sistemy, 17 (93), 23–28. Available at: http://etks.opu.ua/?fetch=articles&with=info&id=627 [in Russian]
  4. Unbehauen, H., Regelungstechnik, I. (2007). Klassische Verfahren zur Analyse und Synthese Linearer Kontinuierlicher Regelsysteme. Fuzzy-Regelsysteme, 20. [in Germany]
  5. Akira, A. (2011). Anti-sway control for overhead cranes using neural networks. International Journal of Innovative Computing, Information and Control, 7 (B), 4251–4262.
  6. Kim, Y., Hong, K., Sul, S. (2004). Anti-Sway Control of Container Cranes: Inclinometer, Observer, and State Feedback. International Journal of Control, Automation, and Systems. 2 (4), 435–449.
  7. Miyata, N., Nishioka, M. (2010). Development of Feedforward Anti-Sway Control for Highly efficient and Safety Crane Operation. Mitsubishi Heavy Industries, Ltd. Technical Review. 38 (2), 73–77.
  8. Suh, J.-H., Lee, J.-W., Lee, Y.-J., Lee, K.-S. (2005). Anti-sway position control of an automated transfer crane based on neural network predictive PID controller. Journal of Mechanical Science and Technology, 19 (2), 505–519. doi: 10.1007/bf02916173
  9. Ngoa, Q., Tranb, T., Hongc, K. (2012). Anti-Sway Control of Container Cranes in the Presence of Friction. International Journal of Innovative Management, Information & Production, 3 (4), 7–14.
  10. Raubar, E., Vrancic, D. (2012). Anti-Sway System for Ship-to-Shore Cranes. Journal of Mechanical Engineering, 58 (5), 338–344. doi: 10.5545/sv-jme.2010.127

Published

2015-06-24

How to Cite

Бушер, В. В., Муха, Н. И., & Шестака, А. И. (2015). Anti-sway control method with dynamic correction of the suspension length for ship-to-shore cranes. Eastern-European Journal of Enterprise Technologies, 3(7(75), 58–63. https://doi.org/10.15587/1729-4061.2015.43405

Issue

Section

Applied mechanics