Mass flow stability method in the extraction process calculations

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.43779

Keywords:

extraction, mathematical model, real-size bodies, target component, concentration, particle size

Abstract

Mass flow stability method, allowing to clarify the existing analytical dependences for calculating the target component withdrawal from the classical-shape bodies (unlimited plate, cylinder, sphere) was proposed. On the example of the III class bodies, application of the method is shown. A mathematical model of the target component extraction from the round particle was developed and the dependence to calculate the concentration was obtained. Consideration of the real body shape deviations from perfect in the form of the shape factor allows to refine the design value for the bodies, corresponding to the III class. It was found that the deviation of the concentration values for the perfect body from real would be the greater, the smaller the particle radius. The maximum relative error of calculations is 11.3 %. It is shown that the target component extraction process is rather complicated and depends strongly on a large number of defining physical characteristics: particle size, diffusion coefficient, mass transfer coefficient, temperature, duration.

Author Biography

Екатерина Викторовна Георгиеш, Odessa National Academy of Food Technologies Dvoryanskaya 1/3, Odessa, Ukraine, 65082

Postgraduate

The department of power engineering and pipeline transportationof energy

References

  1. Pluha, S. U. (2012). Razrabotka i naychnoe obosnovanie sposoba ekstragirovaniya iz yachmenya, gelydey i cikoriya gudkim dioksidom ugleroda Voron. gos.univers, 19.
  2. Maksudov, R. N., Egorov, A. G., Mazo, A. B., Alyaev, V. A., Abdulin, I. Sh. (2008). Matematicheskaya model ekstragirovaniya semyan maslichnyh kyltur sverchkriticheskim dioksidom ugleroda. Svephc. fluidu: Teoriya i practica, 2, 20–32.
  3. Mishenko, E. V., Mishenko, V. Ya. (2011). Modelirovanie processa ekstrakcii pectinovuh veshestv iz sveklichnogo goma s primeneniem vibracionnogo vozdeystviya.Vestnik ОrelGAU, 3, 80–82.
  4. Beloborodov, V. V. (1999). Ekstragirovanie iz tverduch materialov electromagnitnoum polem sverchvusokich chastot. Ing.-fiz. Gurnal, 1, 141–146.
  5. Beloborodov, V. V. (1966). Osnovnue processu proizvodstva rastitelnuch masel. Moscow: Pish. prom, 474.
  6. Lykov, A. V. (1978). Teplomassoobmen. Moscow: Energiya, 480.
  7. Leont’ev, A. I. (Ed.) (1979). Teoriya teplomassoobmena. Мoscow: Vyschayashkola, 495.
  8. Chemat, F., Gravotto, G. (2013). Microwave-assisted extraction for bioactive compounds. Theory and practice. New York: Springer, 248.
  9. Veynik, A. I. (1959). Pribligennuy raschet processov teploprovodnosti. Мoscow: Gos.ener.izd, 183.
  10. Lisyanskiy, S. M., Grebenuk, S. M. (1987). Ekstragirovanie v pishevoy promushlenosti. Moscow: Agropromizdat, 182.
  11. Potapov, A. N. (2012). Issledovanie diffuzionnyh svojstv ryabiny obyknovennoj (Sorbus AucupariaL.). Tehnika i terhnologiya pishevyh proizvodstv, 4, 1–5.
  12. Pushanko, N. N., Kuchar, V. N. (2013). Gidrodinamicheskie usloviya ekstragirovaniya i effektivnost rabotu diffuzionnuch ustanovok, 11, 2–6.

Published

2015-06-29

How to Cite

Георгиеш, Е. В. (2015). Mass flow stability method in the extraction process calculations. Eastern-European Journal of Enterprise Technologies, 3(10(75), 4–9. https://doi.org/10.15587/1729-4061.2015.43779

Issue

Section

Technology and Equipment of Food Production