Effect of heat treatment with antioxidants on respiratory substrates during storage of cucumbers

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.44240

Keywords:

cucumbers, storage, antioxidants, respiration rate, solids, sugars, titrated acids

Abstract

Despite the proven effectiveness of heat treatment and antioxidants to slow down the respiratory metabolism, their combined effect during storage of cucumbers was not considered in this aspect. The paper describes the results of investigating the effect of heat treatment with complex antioxidant on respiration rate and expenditure of solids, soluble solids, sugars and titrated acids during storage of cucumbers.

It was found that heat treatment with antioxidants inhibits the respiration rate and suspends the start of the respiration rate increase by 7 days compared with control fruits. The combination of heat treatment and antioxidants allows to obtain by on average 11 % more solids and 13 % more soluble solids on the 21th day of storage. Cucumbers, treated with antioxidants involve less sugar in the respiratory process. After 21 days of storage, the total amount of sugars in study fruits of the Athena hybrid is higher on average by 12 %, and in Masha cucumbers - by 42 % compared with control fruits. Based on the pair correlation analysis, it was found that acids can be a major respiratory substrate during storage of cucumbers. The combination of heat treatment and antioxidants can be an effective tool to reduce the loss of nutrients during storage of cucumbers.

Author Biography

Олеся Петрівна Прісс, Tavria State Agrotechnological University, B.Khmelnitsky Avenue, 18, Melitopol, Ukraine, 72312

PhD, associate professor

Department of technology of processing and storage of agricultural products

References

  1. Saltveit, M. E. (2007). Respiratory metabolism. In Gross, K. C., Wang, C. Y., Saltveit, M. (eds.) Agricultural handbook number 66 : The commercial storage of fruits, vegetables, and florist and nursery stocks. US Dept. Agr., Washington, DC. May. Аvailable at: http://www.ba.ars.usda.gov/hb66/respiratoryMetab.pdf
  2. Peiris, K. H. S., Mallon, J. L., Kays, S. J. (1997). Respiratory rate and vital heat of some specialty vegetables at various storage temperatures. HortTechnology, 7 (1), 46–49.
  3. Lee, L., Arul, J., Lencki, R., Castaigne, F. (1996). A review on modified atmosphere packaging and preservation of fresh fruits and vegetables: Physiological basis and practical aspects—part II. Packaging technology and science, 9 (1), 1–17. doi: 10.1002/(sici)1099-1522(199601)9:1<1::aid-pts349>3.0.co;2-w
  4. Dhall, R. K. (2013). Advances in edible coatings for fresh fruits and vegetables: a review. Critical reviews in food science and nutrition, 53 (5), 435–450. doi: 10.1080/10408398.2010.541568
  5. Laamim, M., Lapsker, Z., Fallik, E., Ait-Oubahou, A., Lurie, S. (1998). Treatments to reduce chilling injury in harvested cucumbers. Advances in horticultural science, 12 (4), 175–178.
  6. Archbold, D. D., Pomper, K. W. (2003). Ripening pawpaw fruit exhibit respiratory and ethylene climacterics. Postharvest Biology and Technology, 30 (1), 99–103. doi: 10.1016/S0925-5214(03)00135-2
  7. Chalmers, D. J., Rowan, K. S. (1971). The climacteric in ripening tomato fruit. Plant physiology, 48 (3), 235‑240. doi: 10.1104/pp.48.3.235
  8. Saltveit, M. E., McFeeters, R. F. (1980). Polygalacturonase activity and ethylene synthesis during cucumber fruit development and maturation. Plant physiology, 66 (6), 1019–1023. doi: 10.1104/pp.66.6.1019
  9. Knowles, L., Trimble, M. R., Knowles, N. R. (2001). Phosphorus status affects postharvest respiration, membrane permeability and lipid chemistry of European seedless cucumber fruit (Cucumis sativus L.). Postharvest biology and technology, 21 (2), 179–188. doi: 10.1016/s0925-5214(00)00144-7
  10. Saltveit, M. E.; Gross, K. C., Wang, C. Y., Saltveit, M. (Eds.) (2007). Cucumber. Agricultural handbook number 66: The commercial storage of fruits, vegetables, and florist and nursery stocks. US Dept. Agr., Washington, DC. Аvailable at: http://www.ba.ars.usda.gov/hb66/cucumber.pdf
  11. Kang, H. M., Park, K. W., Saltveit, M. E. (2002). Elevated growing temperatures during the day improve the postharvest chilling tolerance of greenhouse-grown cucumber (Cucumis sativus) fruit. Postharvest Biology and Technology, 24 (1), 49‑57. doi: 10.1016/S0925-5214(01)00129-6
  12. Moalemiyan, M., Ramaswamy, H. S. (2012). Quality retention and shelf-life extension in mediterranean cucumbers coated with a pectin-based film. Journal of Food Research, 1 (3), 159‑168. doi: 10.5539/jfr.v1n3p159
  13. Eaks, I. L., Morris, L. L. (1956). Respiration of cucumber fruits associated with physiological injury at chilling temperatures. Plant Physiology, 31 (4), 308–313. doi: 10.1104/pp.31.4.308
  14. Priss, O. P., Prokudina,T. F., Zhukova, V. F. (2009). Substance for the treatment of fruit vegetables before storage. Pat. 41177 Ukraine, IPC А23В 7/00, А23L 3/34.
  15. Dykyi, I. L., Ostapenko, V. M., Filimonova, N. I., Heyderikh, O. H., Kovalov, V. V. (2005). Microbiological study a chlorophyllipt for prepare a soft form of anti-infective drug. Journal of Pharmacy, 4, 73–76.
  16. Sanitary rules and regulations on the use of food additives: approved Ministry of Health of Ukraine 23.07.96 № 222. Available at: http://zakon4.rada.gov.ua/laws/show/z0715-96
  17. Ben-Yehoshua, S. Rodov, V.; Bartz, J. A., Brecht, J. K. (Eds.) (2003). Transpiration and water stress. Postharvest physiology and pathology of vegetables. Dekker. New York, 111–159.
  18. Priss, O. Р., Kalitka, V. V. (2014). Reduction of losses during storage vegetables sensitive to low temperatures. Progressive technique and technology of food production and restaurant industry trade, 1 (19), 209–221.
  19. Priss, O. Р., Kulik, A. S. (2014). Color stabilization of green vegetables at storage. Eastern-European Journal of Enterprise Technologies, 4/10 (70), 53‑58. doi: 10.15587/1729-4061.2014.26231
  20. Priss, O. P. (2015). Firmness and weight loss in stored cucumbers and zucchini. The Bulletin of the National Technical University “Kharkiv Polytechnic Institute” series: “New solutions in modern technologies”, 14 (1123), 60–64.
  21. Nakamach, A., Yoshikawa, M., Kasai, M., Hatae, K. (2002). Change and distribution of taste components during the storage of cucumber. Journal of cookery science of Japan, 35 (3), 234–241.
  22. Handley, L. W., Pharr, D. M., McFeeters, R. F. (1983). Carbohydrate changes during maturation of cucumber fruit implications for sugar metabolism and transport. plant physiology, 72 (2), 498‑502. doi: 10.1104/pp.72.2.498
  23. McFeeters, R. F., Fleming, H. P., Thompson, R. L. (1982). Malic and citric acids in pickling cucumbers. Journal of Food Science, 47 (6), 1859‑1861. doi: 10.1111/j.1365-2621.1982.tb12899.x
  24. Lu, Z., Fleming, H. P., McFeeters, R. F. (2002). Effects of fruit size on fresh cucumber composition and the chemical and physical consequences of fermentation. Journal of food science, 67 (8), 2934‑2939. doi: 10.1111/j.1365-2621.2002.tb08841.x
  25. Verheul, M. J., Slimestad, R., Johnsen, L. R. (2013). Physicochemical changes and sensory evaluation of slicing cucumbers from different origins. European journal of horticultural science, 78 (4), 176‑183.
  26. Castro, S. M., Saraiva, J. A., Lopes-da-Silva, J. A., Delgadillo, I., Van Loey, A., Smout, C., Hendrickx, M. (2008). Effect of thermal blanching and of high pressure treatments on sweet green and red bell pepper fruits (Capsicum annuum L.). Food Chemistry, 107 (4), 1436‑1449. doi: 10.1016/j.foodchem.2007.09.074

Published

2015-06-29

How to Cite

Прісс, О. П. (2015). Effect of heat treatment with antioxidants on respiratory substrates during storage of cucumbers. Eastern-European Journal of Enterprise Technologies, 3(10(75), 19–25. https://doi.org/10.15587/1729-4061.2015.44240

Issue

Section

Technology and Equipment of Food Production