Microsilica influence on the phase consTITUTION and properties of spinel-forming composition

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.47276

Keywords:

alumina-magnesia castable, microsilica, spinel-forming reagents, phase constitution, fusible compounds

Abstract

Experience in using low cement alumina-magnesia castables, containing spinel-forming reagents, in monolithic ladle linings identified their significant advantages in terms of thermomechanical properties, corrosion resistance and slag resistance. A particular feature of these castables is the synthesis of «in situ» magnesium aluminate spinel at high operating temperatures, which provides increased operational lifetime of the lining.

The microsilica influence on the phase constitution of the composite mixture, containing calcium aluminate cement and spinel-forming reagents - calcined alumina and sintered periclase after firing at 17000C was investigated in the paper. It was found that as a result of the interaction of cement calcium aluminates with microsilica, fusible compounds - anorthite and helenite that, at increased microsilica content, impair physical and technical properties of the composite are formed. It was determined that the ratio of spinel-forming reagents and content of the silica-containing material in a matrix component of alumina-magnesia castables is a more important factor of the synthesis of high-melting-point crystalline phases than the microsilica content. Directed regulation of the phase constitution of the matrix component of alumina-magnesia castables by adjusting the grain-size composition of spinel-forming reagents and their optimal ratio will ensure achieving a set of the given physical and technical characteristics of concrete and increasing the operational lifetime of monolithic ladle linings.

Author Biographies

Вікторія Вікторівна Пісчанська, National Metallurgical Academy of Ukraine Gagarina 4, Dnepropetrovsk, Ukraine, 49005

 Candidate of technical science, Associate professor

The department of сhemical technology of ceramics and refractories

Ганна Сергіївна Войтюк, National Metallurgical Academy of Ukraine Gagarina 4, Dnepropetrovsk, Ukraine, 49005

PhD student

The department of metallurgical fuel and refractories

Ярослав Миколайович Пітак, National Technical University "Kharkiv Polytechnic Institute" Str. Frunze 21, Kharkov, Ukraine, 61002

Doctor of technical sciences, Professor, deputy head of the department

The department of chemical engineering ceramics, refractories, glass and enamel

References

  1. Pivinskii, Yu. E. (2005). Neformovannye ogneupory. Vol. 1. Obshchie voprosy tehnologii. M.: Teploenergetik, 448.
  2. Migal, V. P., Margashvili, A. P., Skurikhin, V. V., Rusakov, G. V., Alekseev, P. E. (2009). Neformovannye ogneupornye materialy dlya metallurgicheskoy promyshlenosti. Ogneupory i tekhnichtskaya keramika, № 4–5, 27–33.
  3. Migal, V. P., Skurikhin, V. V., Bulin, V. V. (2011). Neformovannye ogneupory, vypuskaemye OAO «Borovchinskiy kombinat ogneuporov». Novye ogneupory, № 10, 11–14.
  4. Tokarev, A. V., Akselerod, L. M., Korol, L. N., Shebko, P. A. (2005). Nizkotsementnye betony firmy «DALMOND» v futerovke stalerazlivochnykh kovshey. Novye ogneupory, № 6, 63–68.
  5. Kondratev, E. A., Valiulina, M. A. (2014). Perspektivnye tekhnologii neformovannykh ogneuporov vypuskaemykh v Bogdanovichskom OAO « Ogneupory ». Novye ogneupory, 9, 14–16.
  6. Polonskiy, M. G. (2003). Primenenie glinozemshpinelnykh i glinozemmagnezialnykh betonov v futerovkakh stalerazlivochnykh kovshey. Ogneupory i tekhnichtskaya keramika, 3, 37–42.
  7. Ochagova, I. G. (2002). Mokroe torkretirovanie betonami nizkoy vlazhnosti – novyy sposob remonta i izgotovleniya futerovki stalerozlivochnykh kovshey. Novye ogneupory, 6, 50–53.
  8. Shirama, N., Murakami, K., Takita, I. (2001). Monolithic refractories lining for RH degassers with wet gunning. Taikabutsu Refractories, Vol. 53, 8, 481–487.
  9. Ko, Y. C. (2000). Influence of the characteristics of spinels on the slag resistance of Al2O3 – MgO and Al2O3 – Spinel castables. Journal of the American Ceramic Society, Vol. 83, № 9, 2333–2335. doi:10.1111/j.1151-2916.2000.tb01559.x
  10. Braulio, M., Bittenkurt, L., Pandolfelli, V. (2011). Nanoshpineleobrazuyushchiy ogneupornyy beton. Ogneupory i tekhnichtskaya keramika, 6, 27–31.
  11. Myhre, B. (2005). Microsilica in refractory castables. – How does microsilica quality influence perfomance. 9th Biennial Warldwide congress on refractories, 191–195.
  12. Myhre, B., Hundere, A. M. (1997). Substitution of reactive alumina with microsilica in low cement and ultra low cement castables. Part I: Properties Related to Installation and Demoulding, 4–7, 91–100.
  13. Göğtaş, C., Ünlü, N., Odabaşı, A., Sezer, L., Çınar, F., Güner, Ş., Göller, G., Eruslu, N. (2010, January). Preparation and characterisation of self-flowing refractory material containing 971U type microsilica. Advances in Applied Ceramics, Vol. 109, № 1, 6–11. doi:10.1179/174367609x422199
  14. Shirama, N., Murakami, K., Shimizu, I. (2000). Development of low silica wet gunning material for steel ledie. Taikabutsu Refractories, Vol. 52, 12, 662–666.
  15. Samanta, A. K., Satpathy, S., Ganguli, S., Goswani, J., Fdak, S. (2013). Vliyanie mikrokremnezema i alyuminatkaltsievogo tsementa na termomekhanicheskie svoystva nizkotsementnykh ogneupornykh betonov. Ogneupory i tekhnichtskaya keramika, 1–2, 66–70.
  16. Strakhov, V. I., Korzhikov, V. V., Pavlova, E. A., Zhidkov, A. B., Denisov, D. E. (2007). Ob izmenenii fazovogo sostava matrits ogneupornykh betonov CaO – Al2O3 – SiO2 pri termicheskom vozdeystvii. Ogneupory i tekhnichtskaya keramika, 8, 3–7.
  17. Rettore, R., Silva, S., Brittu, M., Matsura, S., Andrade, S. (2007). Vliyanie sootnosheniya «tsement/oksid magniya» na svoystva betonov sistemy Al2O3 – MgO. Ogneupory i tekhnichtskaya keramika, 8, 39–45.
  18. Salomao, R., Pandolfelli, L., Bittenkurt R. (2011). Vliyanie gidravlicheskikh vyazhushchikh na gidratatsiyu spechenogo magnezita v ogneupornykh betonakh. Ogneupory i tekhnichtskaya keramika, 4–5, 59–63.
  19. Karibozorg, Z., Gasemzade, M., Yuzbashizade, Kh. (2007). Vliyanie Al2O3 i MgO na svoistva ogneupornykh shpinelnykh nizkotsementnykh betonov. Ogneupory i tekhnichtskaya keramika, 3, 37–41.
  20. Nemati, A., Nemati, E. (2010). Sravnenie vliyaniya organicheskikh i neorganicheskikh dobavok v betonakh s nizkim soderzhaniem tsementa. Ogneupory i tekhnichtskaya keramika, 6, 22–26.
  21. Ide, K., Suzuki, T., Asano, K., Nishi, T., Isobe, T. (2005). Expansion behavior of alumina-magnesia castables. Journal of the Technical Association of Refractories, Vol. 25, 3, 202–208.
  22. Yang, Z. X., Youn, S. H., Kim, J. J. (2005). Effects of Spinel Formation in Al2O3 – MgO Refractory Castables. UNITECR, 129–133.

Published

2015-08-18

How to Cite

Пісчанська, В. В., Войтюк, Г. С., & Пітак, Я. М. (2015). Microsilica influence on the phase consTITUTION and properties of spinel-forming composition. Eastern-European Journal of Enterprise Technologies, 4(6(76), 8–12. https://doi.org/10.15587/1729-4061.2015.47276

Issue

Section

Technology organic and inorganic substances