Microsilica influence on the phase consTITUTION and properties of spinel-forming composition
DOI:
https://doi.org/10.15587/1729-4061.2015.47276Keywords:
alumina-magnesia castable, microsilica, spinel-forming reagents, phase constitution, fusible compoundsAbstract
Experience in using low cement alumina-magnesia castables, containing spinel-forming reagents, in monolithic ladle linings identified their significant advantages in terms of thermomechanical properties, corrosion resistance and slag resistance. A particular feature of these castables is the synthesis of «in situ» magnesium aluminate spinel at high operating temperatures, which provides increased operational lifetime of the lining.
The microsilica influence on the phase constitution of the composite mixture, containing calcium aluminate cement and spinel-forming reagents - calcined alumina and sintered periclase after firing at 17000C was investigated in the paper. It was found that as a result of the interaction of cement calcium aluminates with microsilica, fusible compounds - anorthite and helenite that, at increased microsilica content, impair physical and technical properties of the composite are formed. It was determined that the ratio of spinel-forming reagents and content of the silica-containing material in a matrix component of alumina-magnesia castables is a more important factor of the synthesis of high-melting-point crystalline phases than the microsilica content. Directed regulation of the phase constitution of the matrix component of alumina-magnesia castables by adjusting the grain-size composition of spinel-forming reagents and their optimal ratio will ensure achieving a set of the given physical and technical characteristics of concrete and increasing the operational lifetime of monolithic ladle linings.
References
- Pivinskii, Yu. E. (2005). Neformovannye ogneupory. Vol. 1. Obshchie voprosy tehnologii. M.: Teploenergetik, 448.
- Migal, V. P., Margashvili, A. P., Skurikhin, V. V., Rusakov, G. V., Alekseev, P. E. (2009). Neformovannye ogneupornye materialy dlya metallurgicheskoy promyshlenosti. Ogneupory i tekhnichtskaya keramika, № 4–5, 27–33.
- Migal, V. P., Skurikhin, V. V., Bulin, V. V. (2011). Neformovannye ogneupory, vypuskaemye OAO «Borovchinskiy kombinat ogneuporov». Novye ogneupory, № 10, 11–14.
- Tokarev, A. V., Akselerod, L. M., Korol, L. N., Shebko, P. A. (2005). Nizkotsementnye betony firmy «DALMOND» v futerovke stalerazlivochnykh kovshey. Novye ogneupory, № 6, 63–68.
- Kondratev, E. A., Valiulina, M. A. (2014). Perspektivnye tekhnologii neformovannykh ogneuporov vypuskaemykh v Bogdanovichskom OAO « Ogneupory ». Novye ogneupory, № 9, 14–16.
- Polonskiy, M. G. (2003). Primenenie glinozemshpinelnykh i glinozemmagnezialnykh betonov v futerovkakh stalerazlivochnykh kovshey. Ogneupory i tekhnichtskaya keramika, № 3, 37–42.
- Ochagova, I. G. (2002). Mokroe torkretirovanie betonami nizkoy vlazhnosti – novyy sposob remonta i izgotovleniya futerovki stalerozlivochnykh kovshey. Novye ogneupory, № 6, 50–53.
- Shirama, N., Murakami, K., Takita, I. (2001). Monolithic refractories lining for RH degassers with wet gunning. Taikabutsu Refractories, Vol. 53, № 8, 481–487.
- Ko, Y. C. (2000). Influence of the characteristics of spinels on the slag resistance of Al2O3 – MgO and Al2O3 – Spinel castables. Journal of the American Ceramic Society, Vol. 83, № 9, 2333–2335. doi:10.1111/j.1151-2916.2000.tb01559.x
- Braulio, M., Bittenkurt, L., Pandolfelli, V. (2011). Nanoshpineleobrazuyushchiy ogneupornyy beton. Ogneupory i tekhnichtskaya keramika, № 6, 27–31.
- Myhre, B. (2005). Microsilica in refractory castables. – How does microsilica quality influence perfomance. 9th Biennial Warldwide congress on refractories, 191–195.
- Myhre, B., Hundere, A. M. (1997). Substitution of reactive alumina with microsilica in low cement and ultra low cement castables. Part I: Properties Related to Installation and Demoulding, № 4–7, 91–100.
- Göğtaş, C., Ünlü, N., Odabaşı, A., Sezer, L., Çınar, F., Güner, Ş., Göller, G., Eruslu, N. (2010, January). Preparation and characterisation of self-flowing refractory material containing 971U type microsilica. Advances in Applied Ceramics, Vol. 109, № 1, 6–11. doi:10.1179/174367609x422199
- Shirama, N., Murakami, K., Shimizu, I. (2000). Development of low silica wet gunning material for steel ledie. Taikabutsu Refractories, Vol. 52, № 12, 662–666.
- Samanta, A. K., Satpathy, S., Ganguli, S., Goswani, J., Fdak, S. (2013). Vliyanie mikrokremnezema i alyuminatkaltsievogo tsementa na termomekhanicheskie svoystva nizkotsementnykh ogneupornykh betonov. Ogneupory i tekhnichtskaya keramika, № 1–2, 66–70.
- Strakhov, V. I., Korzhikov, V. V., Pavlova, E. A., Zhidkov, A. B., Denisov, D. E. (2007). Ob izmenenii fazovogo sostava matrits ogneupornykh betonov CaO – Al2O3 – SiO2 pri termicheskom vozdeystvii. Ogneupory i tekhnichtskaya keramika, № 8, 3–7.
- Rettore, R., Silva, S., Brittu, M., Matsura, S., Andrade, S. (2007). Vliyanie sootnosheniya «tsement/oksid magniya» na svoystva betonov sistemy Al2O3 – MgO. Ogneupory i tekhnichtskaya keramika, № 8, 39–45.
- Salomao, R., Pandolfelli, L., Bittenkurt R. (2011). Vliyanie gidravlicheskikh vyazhushchikh na gidratatsiyu spechenogo magnezita v ogneupornykh betonakh. Ogneupory i tekhnichtskaya keramika, № 4–5, 59–63.
- Karibozorg, Z., Gasemzade, M., Yuzbashizade, Kh. (2007). Vliyanie Al2O3 i MgO na svoistva ogneupornykh shpinelnykh nizkotsementnykh betonov. Ogneupory i tekhnichtskaya keramika, № 3, 37–41.
- Nemati, A., Nemati, E. (2010). Sravnenie vliyaniya organicheskikh i neorganicheskikh dobavok v betonakh s nizkim soderzhaniem tsementa. Ogneupory i tekhnichtskaya keramika, № 6, 22–26.
- Ide, K., Suzuki, T., Asano, K., Nishi, T., Isobe, T. (2005). Expansion behavior of alumina-magnesia castables. Journal of the Technical Association of Refractories, Vol. 25, № 3, 202–208.
- Yang, Z. X., Youn, S. H., Kim, J. J. (2005). Effects of Spinel Formation in Al2O3 – MgO Refractory Castables. UNITECR, 129–133.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Вікторія Вікторівна Пісчанська, Ганна Сергіївна Войтюк, Ярослав Миколайович Пітак
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.