Ore crushing process dynamics modeling using the laguerre model

Authors

  • Олексій Юрійович Михайленко State institution of higher education «Kryvyi Rih National University» 11, XXII Partz’yizdu str., Kryvyi Rih, Ukraine, 50027, Ukraine https://orcid.org/0000-0003-2898-6652

DOI:

https://doi.org/10.15587/1729-4061.2015.47318

Keywords:

crushing process, Laguerre model, identification, sampling interval, modeling

Abstract

The problem of ore crushing process dynamics modeling using the orthonormal Laguerre functions was considered.

The analysis has shown that the maximum sampling interval that will allow to reconstruct the transition process by the discrete sample is 1.3 seconds. As expected, the structure that includes only the first-order Laguerre filter has the worst accuracy. Increasing the number of functions in the orthonormal system leads to the higher modeling quality of the crushing process output. It was also determined that the relationship between the scale factor and mean square error of identification is unimodal in nature, therefore, it is advisable to use optimization methods for finding the optimal value for this parameter.

The research has allowed to reveal the structure and the scale factor of the Laguerre model, and the sampling interval, which allow to ensure the minimum mean square error when using the least squares method for estimating the model parameters.

Author Biography

Олексій Юрійович Михайленко, State institution of higher education «Kryvyi Rih National University» 11, XXII Partz’yizdu str., Kryvyi Rih, Ukraine, 50027

Assistant

Department of Power Supply and Energy Management

References

  1. Atta, K. T., Johansson, A., Gustafsson, T. (2014). Control oriented modeling of flow and size distribution in cone crushers. Minerals Engineering, 56, 81–90. doi: 10.1016/j.mineng.2013.10.031
  2. Itavuo, P., Jaatinen, A., Vilkko, M. (2011). Simulation and Advanced Control of Transient Behaviour in Gyratory Cone Crushers. In Proceedings del 8 Seminario Internacional de Procesamiento de Minerales (Procemin 2011). Santiago, Chile, 1–8.
  3. Nelles, O. (2001). Nonlinear System Identification. From Classical Approaches to Neural Networks and Fuzzy Models. Berlin: Springer-Verilag, 786. doi: 10.1007/978-3-662-04323-3
  4. L'iung, L. (1991). Identifikatsiia sistem: teoriia dlia pol'zovatelia. Translated from English. Moscow: Nauka, 432.
  5. Heuberger, P. S. C., Van Den Hof, P. M. J., Wahlberg, B. (2005). Modelling and Identification with Rational Orthogonal Basis Functions. New York: Springer, 401. doi: 10.1007/1-84628-178-4
  6. Tufa, L. D., Ramasamy, M. (2011). Closed-loop identification of systems with uncertain time delays using ARX–OBF structure. Journal of Process Control, 21 (8), 1148–1154. doi: 10.1016/j.jprocont.2011.06.021
  7. Landmann, I. (1984). Razrabotka i issledovanie algoritmicheskogo i programmnogo obespecheniia dlia identifikatsii dinamicheskih obiektov v ASU TP. Moscow, 190.
  8. Wahlberg, B. (1994). System identification using Kautz models. IEEE Transactions on Automatic Control, 39 (6), 1276–1282. doi: 10.1109/9.293196
  9. Zalmanzon, L. A. (1989). Preobrazovaniia Fur'e, Uolsha, Haara i ih primenenie v upravlenii, sviazi i drugih oblastiah. Moscow: Nauka, 496.
  10. E Silva, T. O. (1995). Laguerre Filters – An Introduction. Revista Do Detua, 1 (3), 237–248.
  11. De Hoog, T. J. (2001). Rational Orthonormal Bases and Related Transforms in Linear System Modeling. Minneapolis, 211.
  12. Wang, L. (2009). Model Predictive Control System Design and Implementation Using MATLAB. London: Springer-Verilag, 375. doi: 10.1007/978-1-84882-331-0
  13. Mykhailenko, O. Yu. (2013). Udoskonalennia matematychnoi modeli konusnoi drobarky z urakhuvanniam rozdilennia kamery droblennia na zony. Visnyk Kryvorizkoho natsionalnoho universytetu, 35, 163–170.
  14. Izerman, R. (1984). Tsifrovye sistemy upravleniia. Moscow: Mir, 541.

Published

2015-08-27

How to Cite

Михайленко, О. Ю. (2015). Ore crushing process dynamics modeling using the laguerre model. Eastern-European Journal of Enterprise Technologies, 4(4(76), 30–35. https://doi.org/10.15587/1729-4061.2015.47318

Issue

Section

Mathematics and Cybernetics - applied aspects