Lowering of technological risks of hypersound aeronavigation

Authors

  • Владимир Владимирович Карачун National Technical University of Ukraine “Kyiv Polytechnic Institute”, Avenue Victories, 37, Kyiv, Ukraine, 03056, Ukraine
  • Виктория Николаевна Мельник National technical university of Ukraine is the "Kyiv polytechnic institute" 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-0004-7218

DOI:

https://doi.org/10.15587/1729-4061.2015.47787

Keywords:

hypersonic technology, inertial sensors, penetrating acoustic radiation, impedance phase, error

Abstract

The study reveals the mechanism of an acoustic error of an inertial sensor with a float static liquid suspension. The paper presents a numerical analysis of the autonomous positioning error that used to pose a technological risk. We have disclosed the characteristics of the device dynamics in a non-inertial frame of reference and revealed the dependence of kinematic parameters in the base and the mobile systems.

The paper describes the nature of additional precession in the inertial sensor in the operating conditions of a hypersonic flight caused bythe Euler force and analyses the device’s gyroscopic response to the moments of the Coriolis effect on the precession axis in the impedance float surface.

The findings can be used in hypersonic aircraft for assault and foreign intelligence. They can improveserial production of hypersonic technologies to the desired level, reducing technological risks of the vehicles’operational use.

Author Biographies

Владимир Владимирович Карачун, National Technical University of Ukraine “Kyiv Polytechnic Institute”, Avenue Victories, 37, Kyiv, Ukraine, 03056

Doctor of engineering sciences, professor

Department of biotechnics and engineering

Виктория Николаевна Мельник, National technical university of Ukraine is the "Kyiv polytechnic institute" 37 Peremogy ave., Kyiv, Ukraine, 03056

Doctor of engineering sciences, professor, head of department

Department of biotechnics and engineering

References

  1. Kulyk, M. S., Mel’nyck, V. M., Karachun, V. V., Ladogubets, N. V. (2015). Suborbital and Atmospheric Hypersound Technologies. Kiev, Ukraine: NАU, 328.
  2. Karachun, V. V., Ladogubets, N. V., Mel’nyck, V. M. (2014). Supersonic aircraft. Kiev, Ukraine: NАU, 240.
  3. Mel’nyck, V. M. Float gyroscope. Ukrainian Patent No. 85150. 11 Nov. 20013, 1.
  4. Winter, F. H., Van der Binder, F.R. (2003). 100 years of flight: a chronicle of aerospace history, 1903-2003. Reston, Virginia: American Institute of Aeronautics and Astronautics, 524.
  5. Barbour, N. M. (2010). Inertial Navigation Sensors. Cambridge, 10.
  6. Nwe, T. T. (2008). Application of an Inertial Navigation System to the Quad-rotor UAV using MEMS Sensors. Engineering and Technology, 42, 578–582.
  7. Woodman, O. J. (2007). An introduction to inertial navigation. Cambridge, 37.
  8. Le Manh Hung, V. (2009). Indoor Navigation System for Handheld Devices. Worcester, 198.
  9. Nasiri, S. A. (2004). Critical Review of MEMS Gyroscopes Technology and Commercialization Status. California, 8.
  10. Karachun, V. V, Shibetskij V. Y. (2012). Passive methods of error reduction of floating gyroscope under the N-wave. Eastern-European Journal of Enterprise Technologies, 5/7 (59), 8–10. Available at: http://journals.uran.ua/eejet/article/view/4149/3912
  11. Zaborov, V. I. (1962). The theory of insulation walling. Moscow, USSR: Stroyizdat, 116.
  12. Heng, M., Erkorkmaz, K. (2010). Design of a NURBS interpolator with minimal feed fluctuation and continuous feed modulation capability. International Journal of Machine Tools and Manufacture, 50 (3), 281–293. doi: 10.1016/j.ijmachtools.2009.11.005

Published

2015-08-19

How to Cite

Карачун, В. В., & Мельник, В. Н. (2015). Lowering of technological risks of hypersound aeronavigation. Eastern-European Journal of Enterprise Technologies, 4(7(76), 57–61. https://doi.org/10.15587/1729-4061.2015.47787

Issue

Section

Applied mechanics