Analysis of approaches to mathematical description of the characteristics of materials with high hydrophobicity

Authors

  • Анна Владимировна Придатко National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave., Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-8075-2848
  • Алексей Владимирович Миронюк National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave., Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-0499-9491
  • Валентин Анатольевич Свидерский National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave., Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7696-0054

DOI:

https://doi.org/10.15587/1729-4061.2015.50647

Keywords:

superhydrophobicity, Cassie state, Wentzel state, wetting angle, roll-off angle, wetting hysteresis

Abstract

The increasing interest in the superhydrophobic materials in the scientific world leads to the accumulation of a large amount of theoretical models of such surfaces, and the corresponding experimental data. The ordering of such information is required to create a unified approach to modeling surfaces with controlled hydrophobicity.

The review includes a classification of the main significant characteristics of the hydrophobic properties of materials, namely, wetting, roll-off, and outflow wetting and inflow wetting angles in applying to smooth, as well as rough surfaces. Two fundamental wetting states of textured materials - Cassie-Baxter and Wentzel are described. Next, a set of mathematical models, which allow to calculate the above parameters based on structural and energy properties of the material surface is given. One of the most important characteristics of superhydrophobic materials - wetting state stability is described in the third part of the review, which presents corresponding analytical models, indicating the possible optimal types of the surface structure to achieve the specified state. For example, using irregularities with a reentrant geometry allows to achieve stable values of the wetting angle above 160°. At the same time, it is shown that for large-scale use of superhydrophobic materials, materials with the hierarchical (micro-nano) structure of irregularities are the most suitable.

Author Biographies

Анна Владимировна Придатко, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave., Kiev, Ukraine, 03056

Postgraduate student

Department of polymer and composite materials

Алексей Владимирович Миронюк, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave., Kiev, Ukraine, 03056

PhD, associated professor

Department of polymer and composite materials

Валентин Анатольевич Свидерский, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave., Kiev, Ukraine, 03056

Doctor of Tecgnical Science, Professor

Department of polymer and composite materials

References

  1. Boinovich, L. B, Yemelyanenko, A. M. (2008). Hydrophobnie materiali I pokritiya: principi sozdaniya, svoistva i priminenie. Uspehi himii, 77 (7), 619–638
  2. Della Volpe, C., Maniglio, D., Brugnara, M., Siboni, S., Morra, M. (2004). The solid surface free energy calculation. Journal of Colloid and Interface Science, 271 (2), 434–453. doi: 10.1016/j.jcis.2003.09.049
  3. Deryagin, B. V., Zahayeva, N. N., Talayev, M. V. (1955). Prybor dlya opredeleniya koefficienta filtracii i kapilyarnoi propitki poristih I dispersnih tel. Мoscow: АN USSR, 11.
  4. Salamone, J. (1996). Polymeric Materials Encyclopedia. CRC Press, NY, 9600.
  5. Latthe, S., Terashima, C., Nakata, K. (2014). Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf, 19, 4256–428. doi: 10.3390/molecules19044256
  6. Latthe, S., Terashima, C., Nakata, K., Fujishima, A. (2014). Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf. Molecules, 19 (4), 4256–4283. doi: 10.3390/molecules19044256
  7. Israelachvili, J. N. (1992). Intermolecular and Surface Forces, Second Edition. Academic Press, London, 456
  8. Young, T. (1805). An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 95, 65–87. doi: 10.1098/rstl.1805.0005
  9. Pashley, R. M., Israelachvili, J. N. (1981). A comparison of surface forces and interfacial properties of mica in purified surfactant solutions. Colloids and Surfaces, 2 (2), 169–187. doi: 10.1016/0166-6622(81)80006-6
  10. Girifalco, L. A., Good, R. J. (1957). A Theory for the Estimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial Tension. The Journal of Physical Chemistry, 61 (7), 904–909. doi: 10.1021/j150553a013
  11. Nishino, T., Meguro, M., Nakamae, K., Matsushita, M., Ueda, Y. (1999). The Lowest Surface Free Energy Based on −CF 3 Alignment . Langmuir, 15 (13), 4321–4323. doi: 10.1021/la981727s
  12. Koch, K., Bhushan, B., Jung, Y. C., Barthlott, W. (2009). Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter, 5 (7), 1386–1393. doi: 10.1039/b818940d
  13. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28 (8), 988–994. doi: 10.1021/ie50320a024
  14. Wenzel, R. N. (1949). Surface Roughness and Contact Angle. The Journal of Physical and Colloid Chemistry, 53 (9), 1466–1467. doi: 10.1021/j150474a015
  15. Cassie, A. B. D., Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551. doi: 10.1039/tf9444000546
  16. Choi, W., Tuteja, A., Mabry, J. M., Cohen, R. E., McKinley, G. H. (2009). A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. Journal of Colloid and Interface Science, 339 (1), 208–216. doi: 10.1016/j.jcis.2009.07.027
  17. Roach, P., Shirtcliffe, N. J., Newton, M. I. (2008). Progress in superhydrophobic surface development. Soft Matter, 4 (2), 224–240. doi: 10.1039/b712575p
  18. Quéré, D. (2005). Non-sticking drops. Reports on Progress in Physics, 68 (11), 2495–2532. doi: 10.1088/0034-4885/68/11/r01
  19. Dussan V., E. B., Chow, R. T.-P. (1983). On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Journal of Fluid Mechanics, 137 (1), 1–29. doi: 10.1017/s002211208300227x
  20. Reyssat, M., Quéré, D. (2009). Contact Angle Hysteresis Generated by Strong Dilute Defects. The Journal of Physical Chemistry B, 113 (12), 3906–3909. doi: 10.1021/jp8066876
  21. Gleiche, M., Chi, L. F., Fuchs, H. (2000). Nanoscopic channel lattices with controlled anisotropic wetting. Nature, 403 (6766), 173–175. doi: 10.1038/35003149
  22. Herminghaus, S. (2007). Roughness-induced non-wetting. Europhysics Letters (EPL), 79 (5), 59901. doi: 10.1209/0295-5075/79/59901
  23. Koch, K., Bhushan, B., Barthlott, W. (2008). Diversity of structure, morphology and wetting of plant surfaces. Soft Matter, 4 (10), 1943–1963. doi: 10.1039/b804854a
  24. Marmur, A. (2003). Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be? Langmuir, 19 (20), 8343–8348. doi: 10.1021/la0344682
  25. Wolansky, G. Marmur, A. (1999). Apparent contact angles on rough surfaces: the Wenzel equation revisited. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 156 (1-3), 381–388. doi: 10.1016/s0927-7757(99)00098-9
  26. Brandon, S. (2003). Partial wetting of chemically patterned surfaces: the effect of drop size. Journal of Colloid and Interface Science, 263 (1), 237–243. doi: 10.1016/s0021-9797(03)00285-6
  27. Erbil, H. Y., Demirel, A. L., Avcı, Y., Mert, O. (2003). Transformation of a Simple Plastic into a Superhydrophobic Surface. Science, 229 (5611), 1377–1380. doi: 10.1126/science.1078365
  28. Levkin, P. A., Svec, F., Frechet, J. M. J. (2009). Porous Polymer Coatings: a Versatile Approach to Superhydrophobic Surfaces. Advanced Functional Materials, 19 (12), 1993–1998. doi: 10.1002/adfm.200801916
  29. Kijlstra, J., Reihs, K., Klami, A. (2002). Roughness and topology of ultra–hydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206 (1-3), 521–529. doi: 10.1016/s0927-7757(02)00089-4
  30. Krasovitski, B., Marmur, A. (2004). Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plane. Langmuir, 21 (9), 3881–3885. doi: 10.1021/la0474565
  31. Patankar, N. A. (2010). Hysteresis with Regard to Cassie and Wenzel States on Superhydrophobic Surfaces. Langmuir, 26 (10), 7498–7503. doi: 10.1021/la904286k
  32. Chen, W., Fadeev, A. Y., Hsieh, M. C., Oner, D., Youngblood, J., McCarthy, T. J. (1999). Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples. Langumir, 15 (10), 3395–3399. doi: 10.1021/la990074s
  33. Oner, D. McCarthy, T. J. (2000). Ultrahydrophobic Surfaces. Effects of Topography/Length Scales on Wettability. Langmuir, 16 (20), 7777–7782. doi: 10.1021/la000598o
  34. Krumpfer, J. W., McCarthy, T. J. (2010). Contact angle hysteresis: a different view and a trivial recipe for low hysteresis hydrophobic surfaces. Faraday Discussions, 146, 103. doi: 10.1039/b925045j
  35. Marmur, A. (1994). Contact Angle Hysteresis on Heterogeneous Smooth Surfaces. Journal of Colloid and Interface Science, 168 (1), 40–46. doi: 10.1006/jcis.1994.1391
  36. Chen, Y. L., Helm, C. A., Israelachvili, J. N. (1991). Molecular Mechanisms Associated with Adhesion and Contact Angle Hysteresis of Monolayer Surfaces. JThe Journal of Physical Chemistry, 95 (26), 10736–10747. doi: 10.1021/j100179a041
  37. Dettre, R. H., Johnson, Jr. R. R. (1963). Contact Angle, Wettability and Adhesion. American Chemical Society, 43, 136.
  38. Lafuma A., Quere D. (2003). Superhydrophobic states. Nature materials, 2 (7), 457–460. doi: 10.1038/nmat924
  39. Quere, D. (2008). Wetting and Roughness. Annual Review of Materials Research, 38 (1), 71–99. doi: 10.1146/annurev.matsci.38.060407.132434
  40. Patankar, N. A. (2004). Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir, 20 (19), 8209–8213. doi: 10.1021/la048629t
  41. Patankar, N. A. (2012). Transition between superhydrophobic states on rough surfaces. Langmuir, 20 (17), 7097–7102. doi: 10.1021/la049329e
  42. Nosonovsky, M., Bhushan, B. (2008). Roughness–induced superhydrophobicity: a way to design non–adhesive surfaces. J. Phys.: Condens. Matter, 20 (22), 1–30. doi: 10.1088/0953-8984/20/22/225009
  43. Joanny, J., DeGennes, J. (1984). A model for contact angle hysteresis. The Journal of Chemical Physics, 81 (1), 552–562. doi: 10.1063/1.447337
  44. Anantharaju, N., Panchagnula, M., Vedantam, S., Neti, S., Tatic–Lucic, S. (2007). Effect of threephase contact line topology on dynamic contact angles on heterogeneous surfaces. Langmuir, 23 (23), 11673–11676. doi: 10.1021/la702023e
  45. Extrand, C. W. (1998). A Thermodynamic Model for Contact Angle Hysteresis. Journal of Colloid and Interface Science, 207 (1), 11–19. doi: 10.1006/jcis.1998.5743
  46. Extrand, C. W. (2002). Model for contact angle and hysteresis on rough and ultraphobic surfaces. Langmuir, 18 (21), 7991–7999. doi: 10.1021/la025769z
  47. Good, R. J. (1952). A thermodynamic derivation of Wenzel's modification of Young's equation for contact angle, together with a theory of hysteresis. Journal of the American Chemical Society, 74 (20), 5041–5042. doi: 10.1021/ja01140a014
  48. Johnson, R. E., Dettre. (1964). Contact Angle Hysteresis. R. H. J. Phys. Chem., 68 (7), 1744–1750.
  49. Nosonovsky, M., Bhushan, B. (2005). Roughness optimization for biomimetic superhydrophobic surfaces. Microsystem Technologies, 11 (7), 535–549. doi: 10.1007/s00542-005-0602-9
  50. Nakae, H., Inui, R., Hirata, Y., Saito, H. (1998). Effects of Surface Roughness on Wettability. Acta Materialia, 46 (7), 2313–2318. doi: 10.1016/s1359-6454(97)00387-x
  51. Zhang, J., Xue, L., Han, Y. (2005). Fabrication Gradient Surfaces by Changing Polystyrene Microsphere Topography. Langmuir, 21 (1), 5–8. doi: 10.1021/la047584t
  52. Ge, H., Song, Y., Jiang, L., Zhu, D. (2006). One–step preparation of polystyrene colloidal crystal films with structural colors and high hydrophobicity. Thin Solid Films, 515 (4), 1539–1543. doi: 10.1016/j.tsf.2006.04.022
  53. Synytska, A., Ionov, L., Dutschk, V., Stamm, M., Grundke, K. (2008). Wetting on Regularly Structured Surfaces from “Core–Shell” Particles: Theoretical Predictions and Experimental Findings. Langmuir, 24 (20), 11895–11901. doi: 10.1021/la8010585
  54. Raj, R., Enright, R., Zhu, Y., Adera, S., Evelyn, N. (2012). Wang Unified Model for Contact Angle Hysteresis on Heterogeneous and Superhydrophobic Surfaces. Langmuir, 28 (45), 15777−15788. doi: 10.1021/la303070s
  55. Shibuichi, S., Onda, T., Satoh, N., Tsujii, K. (1996). Super Water–Repellent Surfaces Resulting from Fractal Structure. The Journal of Physical Chemistry, 100 (50), 19512–19517. doi: 10.1021/jp9616728
  56. Cottin–Bizonne, C., Barentin, C., Bocquet, L. (2012). Scaling laws for slippage on superhydrophobic fractal surfaces. Phisics of fluids, 24 (1), 13–27. doi: 10.1063/1.3674300
  57. Synytska, A., Ionov, L., Grundke, K., Stamm, M. (2009). Wetting on Fractal Superhydrophobic Surfaces from “Core–Shell” Particles: A Comparison of Theory and Experiment. Langmuir, 25 (5), 3132–3136. doi: 10.1021/la803120d
  58. Jopp, J., Grull, H., Yerushalmi–Rozen, R. (2004). Wetting Behavior of Water Droplets on Hydrophobic Microtextures of Comparable Size. Langmuir, 20 (23), 10015–10019. doi: 10.1021/la0497651
  59. Campos, R., Guenthner, A. J., Meuler, A. J., Tuteja, A., Cohen, R. E., McKinley, G. H., Haddad, T. S., Mabry, J. M. Superoleophobic Surfaces through Control of Sprayed–on Stochastic Topography. Available at: http://web.mit.edu/nnf/publications/GHM187.pdf
  60. Whitehouse, D. J., Archard, J. F. (1970). The Properties of Random Surfaces of Significance in their Contact. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 316 (1524), 97–121. doi: 10.1098/rspa.1970.0068
  61. Greenwood, J. A., Williamson, J. B. P. (1966). Contact of Nominally Flat Surfaces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 295 (1442), 300–319. doi: 10.1098/rspa.1966.0242
  62. Vinogradova, O. I., Yakubov, G. E. (2006). Surface roughness and hydrodynamic boundary conditions. Physical Review E., 73 (4), 5. doi: 10.1103/physreve.73.045302
  63. Kunert, C., Harting, J. (2008). Simulation of fluid flow in hydrophobic rough microchannels. International Journal of Computational Fluid Dynamics, 22 (7), 475–480. doi: 10.1080/10618560802238234
  64. Herminghausa, S. (2012). Wetting, spreading, and adsorption on randomly rough surfaces. The European Physical Journal E, 35 (6), 1–10. doi: 10.1140/epje/i2012-12043-8
  65. Long, J., Hyder, M. N., Huang, R. Y. M., Chen, P. (2005). Thermodynamic modeling of contact angles on rough, heterogeneous surfaces. Advances in Colloid and Interface Science, 118 (1-3), 173–190. doi: 10.1016/j.cis.2005.07.004
  66. Kusumaatmaja, H., Yeomans, J. M. (2007). Modeling Contact Angle Hysteresis on Chemically Patterned and Superhydrophobic Surfaces. Langmuir, 23 (11), 6019–6032. doi: 10.1021/la063218t
  67. Yang, X. F. (1995). Equilibrium contact angle and intrinsic wetting hysteresis. Applied Physics Letters, 67 (15), 2249–2251. doi: 10.1063/1.115119
  68. Extrand, C. W, Kumagai Y. (1995). Liquid drops on an inclined plane—the relation between contact angles, drop shape, and retentive force. Journal of Colloid and Interface Science, 170 (2), 515–521. doi: 10.1006/jcis.1995.1130
  69. De Gennes, P. G. (1985). Wetting – statics and dynamics. Reviews of Modern Physics, 57 (3), 827–863. doi: 10.1103/revmodphys.57.827
  70. Bormashenko, E., Bormashenko, Y., Whyman, G., Pogreb, R., Musin, A., Jager, R., Barkay, Z. (2008). Contact Angle Hysteresis on Polymer Substrates Established with Various Experimental Techniques, Its Interpretation, and Quantitative Characterization. Langmuir, 24 (8), 4020–4025. doi: 10.1021/la703875b
  71. Bico, J., Thiele, U., Que´re´, D. (2002). Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206 (1-3), 41–46. doi: 10.1016/s0927-7757(02)00061-4
  72. Bormashenko, E., R. Pogreb, G. Whyman, M. Erlich. (2007). Cassie–Wenzel Wetting Transition in Vibrating Drops Deposited on Rough Surfaces: Is the Dynamic Cassie–Wenzel Wetting Transition a 2D or 1D Affair? Langmuir, 23 (12), 6501–6503. doi: 10.1021/la700935x
  73. Xiu, Y., Zhu, L., Hess, D.W., Wong, C. P. (2007). Hierarchical Silicon Etched Structures for Controlled Hydrophobicity/Superhydrophobicity. Nano Letters, 7 (11), 88–93. doi: 10.1021/nl0717457
  74. Rothstein, J. P. (2010). Slip on Superhydrophobic Surfaces. Annual Review of Fluid Mechanics, 42 (1), 89–109. doi: 10.1146/annurev-fluid-121108-145558
  75. Xiu, Y., Zhu, L., Hess, D. W., Wong, C. P. (2008). Relationship between Work of Adhesion and Contact Angle Hysteresis on Superhydrophobic Surfaces. Journal of Physical Chemistry C, 112 (30), 11403–11407. doi: 10.1021/jp711571k
  76. Bushan, B., Jung, Y. C., Koch, K. (2009). Micro–, nano– and hierarchical structures for superhydrophobicity, self–cleaning and low adhesion. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367 (1894), 1631–1672. doi: 10.1098/rsta.2009.0014
  77. Kusumaatmaja H., Yeomans J. M. (2007). Modeling Contact Angle Hysteresis on Chemically Patterned and Superhydrophobic Surfaces. Langmuir, 23 (11), 6019–6032. doi: 10.1021/la063218t
  78. He, B., Patankar, N. A., Lee, J. (2003). Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir, 19 (12), 4999–5003. doi: 10.1021/la0268348
  79. Bico, J., Marzolin, C., Que´re´. (1999). Pearl drops. Europhysics Letters (EPL), 47 (2), 220– 226. doi: 10.1209/epl/i1999-00548-y
  80. Yoshimitsu, Z., Nakajima, A., Watanabe, T., Hashimoto, K. (2002). Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets. Langmuir, 18 (15), 5818. doi: 10.1021/la020088p
  81. Nosonovsky, M., Bhushan, B. (2007). Hierarchical roughness makes superhydrophobic surfaces stable. Microelectronic Engineering, 84 (3), 382–386. doi: 10.1016/j.mee.2006.10.054
  82. Kim, J. G., Choi, H. J., Park, K. C., Cohen, R. E., McKinley, G. H., Barbastathis, G. (2014). Multifunctional Inverted Nanocone Arrays for Non–wetting, Self–cleaning Transparent Surface with High Mechanical Robustness. Small, 10 (12), 2487–2494. doi: 10.1002/smll.201303051
  83. Tuteja A., Choi, W., McKinley, G. H., Cohen, R. E., Rubner, M. F. (2008). Design Parameters for Superhydrophobicity and Superoleophobicity. MRS Bulletin, 33 (08), 752–758. doi: 10.1557/mrs2008.161
  84. Lee, Y., Park, S. H., Kim, K. B., Lee, J. K. (2007). Fabrication of Hierarchical Structures on a Polymer Surface to Mimic Natural Superhydrophobic Surfaces. Advanced Materials, 19 (17), 2330–2335. doi: 10.1002/adma.200700820
  85. Guo, Z., Liu., W. (2007). Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Science, 172 (6), 1103–1112. doi: 10.1016/j.plantsci.2007.03.005
  86. Nosonovsky, M., Bhushan, B. (2007). Multiscale friction mechanisms and hierarchical surfaces in nano– and bio–tribology. Materials Science and Engineering: R: Reports, 58 (3-5), 162–193. doi: 10.1016/j.mser.2007.09.001
  87. Nosonovsky, M., Bhushan, B. (2008). Multiscale dissipative mechanisms and hierarchical surfaces: friction, superhydrophobicity, and biomimetics. Heidelberg, Germany: Springer, 278. doi: 10.1007/978-3-540-78425-8

Published

2015-10-24

How to Cite

Придатко, А. В., Миронюк, А. В., & Свидерский, В. А. (2015). Analysis of approaches to mathematical description of the characteristics of materials with high hydrophobicity. Eastern-European Journal of Enterprise Technologies, 5(5(77), 30–41. https://doi.org/10.15587/1729-4061.2015.50647