Analysis of approaches to mathematical description of the characteristics of materials with high hydrophobicity
DOI:
https://doi.org/10.15587/1729-4061.2015.50647Keywords:
superhydrophobicity, Cassie state, Wentzel state, wetting angle, roll-off angle, wetting hysteresisAbstract
The increasing interest in the superhydrophobic materials in the scientific world leads to the accumulation of a large amount of theoretical models of such surfaces, and the corresponding experimental data. The ordering of such information is required to create a unified approach to modeling surfaces with controlled hydrophobicity.
The review includes a classification of the main significant characteristics of the hydrophobic properties of materials, namely, wetting, roll-off, and outflow wetting and inflow wetting angles in applying to smooth, as well as rough surfaces. Two fundamental wetting states of textured materials - Cassie-Baxter and Wentzel are described. Next, a set of mathematical models, which allow to calculate the above parameters based on structural and energy properties of the material surface is given. One of the most important characteristics of superhydrophobic materials - wetting state stability is described in the third part of the review, which presents corresponding analytical models, indicating the possible optimal types of the surface structure to achieve the specified state. For example, using irregularities with a reentrant geometry allows to achieve stable values of the wetting angle above 160°. At the same time, it is shown that for large-scale use of superhydrophobic materials, materials with the hierarchical (micro-nano) structure of irregularities are the most suitable.
References
- Boinovich, L. B, Yemelyanenko, A. M. (2008). Hydrophobnie materiali I pokritiya: principi sozdaniya, svoistva i priminenie. Uspehi himii, 77 (7), 619–638
- Della Volpe, C., Maniglio, D., Brugnara, M., Siboni, S., Morra, M. (2004). The solid surface free energy calculation. Journal of Colloid and Interface Science, 271 (2), 434–453. doi: 10.1016/j.jcis.2003.09.049
- Deryagin, B. V., Zahayeva, N. N., Talayev, M. V. (1955). Prybor dlya opredeleniya koefficienta filtracii i kapilyarnoi propitki poristih I dispersnih tel. Мoscow: АN USSR, 11.
- Salamone, J. (1996). Polymeric Materials Encyclopedia. CRC Press, NY, 9600.
- Latthe, S., Terashima, C., Nakata, K. (2014). Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf, 19, 4256–428. doi: 10.3390/molecules19044256
- Latthe, S., Terashima, C., Nakata, K., Fujishima, A. (2014). Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf. Molecules, 19 (4), 4256–4283. doi: 10.3390/molecules19044256
- Israelachvili, J. N. (1992). Intermolecular and Surface Forces, Second Edition. Academic Press, London, 456
- Young, T. (1805). An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 95, 65–87. doi: 10.1098/rstl.1805.0005
- Pashley, R. M., Israelachvili, J. N. (1981). A comparison of surface forces and interfacial properties of mica in purified surfactant solutions. Colloids and Surfaces, 2 (2), 169–187. doi: 10.1016/0166-6622(81)80006-6
- Girifalco, L. A., Good, R. J. (1957). A Theory for the Estimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial Tension. The Journal of Physical Chemistry, 61 (7), 904–909. doi: 10.1021/j150553a013
- Nishino, T., Meguro, M., Nakamae, K., Matsushita, M., Ueda, Y. (1999). The Lowest Surface Free Energy Based on −CF 3 Alignment . Langmuir, 15 (13), 4321–4323. doi: 10.1021/la981727s
- Koch, K., Bhushan, B., Jung, Y. C., Barthlott, W. (2009). Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter, 5 (7), 1386–1393. doi: 10.1039/b818940d
- Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28 (8), 988–994. doi: 10.1021/ie50320a024
- Wenzel, R. N. (1949). Surface Roughness and Contact Angle. The Journal of Physical and Colloid Chemistry, 53 (9), 1466–1467. doi: 10.1021/j150474a015
- Cassie, A. B. D., Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551. doi: 10.1039/tf9444000546
- Choi, W., Tuteja, A., Mabry, J. M., Cohen, R. E., McKinley, G. H. (2009). A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. Journal of Colloid and Interface Science, 339 (1), 208–216. doi: 10.1016/j.jcis.2009.07.027
- Roach, P., Shirtcliffe, N. J., Newton, M. I. (2008). Progress in superhydrophobic surface development. Soft Matter, 4 (2), 224–240. doi: 10.1039/b712575p
- Quéré, D. (2005). Non-sticking drops. Reports on Progress in Physics, 68 (11), 2495–2532. doi: 10.1088/0034-4885/68/11/r01
- Dussan V., E. B., Chow, R. T.-P. (1983). On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Journal of Fluid Mechanics, 137 (1), 1–29. doi: 10.1017/s002211208300227x
- Reyssat, M., Quéré, D. (2009). Contact Angle Hysteresis Generated by Strong Dilute Defects. The Journal of Physical Chemistry B, 113 (12), 3906–3909. doi: 10.1021/jp8066876
- Gleiche, M., Chi, L. F., Fuchs, H. (2000). Nanoscopic channel lattices with controlled anisotropic wetting. Nature, 403 (6766), 173–175. doi: 10.1038/35003149
- Herminghaus, S. (2007). Roughness-induced non-wetting. Europhysics Letters (EPL), 79 (5), 59901. doi: 10.1209/0295-5075/79/59901
- Koch, K., Bhushan, B., Barthlott, W. (2008). Diversity of structure, morphology and wetting of plant surfaces. Soft Matter, 4 (10), 1943–1963. doi: 10.1039/b804854a
- Marmur, A. (2003). Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be? Langmuir, 19 (20), 8343–8348. doi: 10.1021/la0344682
- Wolansky, G. Marmur, A. (1999). Apparent contact angles on rough surfaces: the Wenzel equation revisited. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 156 (1-3), 381–388. doi: 10.1016/s0927-7757(99)00098-9
- Brandon, S. (2003). Partial wetting of chemically patterned surfaces: the effect of drop size. Journal of Colloid and Interface Science, 263 (1), 237–243. doi: 10.1016/s0021-9797(03)00285-6
- Erbil, H. Y., Demirel, A. L., Avcı, Y., Mert, O. (2003). Transformation of a Simple Plastic into a Superhydrophobic Surface. Science, 229 (5611), 1377–1380. doi: 10.1126/science.1078365
- Levkin, P. A., Svec, F., Frechet, J. M. J. (2009). Porous Polymer Coatings: a Versatile Approach to Superhydrophobic Surfaces. Advanced Functional Materials, 19 (12), 1993–1998. doi: 10.1002/adfm.200801916
- Kijlstra, J., Reihs, K., Klami, A. (2002). Roughness and topology of ultra–hydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206 (1-3), 521–529. doi: 10.1016/s0927-7757(02)00089-4
- Krasovitski, B., Marmur, A. (2004). Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plane. Langmuir, 21 (9), 3881–3885. doi: 10.1021/la0474565
- Patankar, N. A. (2010). Hysteresis with Regard to Cassie and Wenzel States on Superhydrophobic Surfaces. Langmuir, 26 (10), 7498–7503. doi: 10.1021/la904286k
- Chen, W., Fadeev, A. Y., Hsieh, M. C., Oner, D., Youngblood, J., McCarthy, T. J. (1999). Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples. Langumir, 15 (10), 3395–3399. doi: 10.1021/la990074s
- Oner, D. McCarthy, T. J. (2000). Ultrahydrophobic Surfaces. Effects of Topography/Length Scales on Wettability. Langmuir, 16 (20), 7777–7782. doi: 10.1021/la000598o
- Krumpfer, J. W., McCarthy, T. J. (2010). Contact angle hysteresis: a different view and a trivial recipe for low hysteresis hydrophobic surfaces. Faraday Discussions, 146, 103. doi: 10.1039/b925045j
- Marmur, A. (1994). Contact Angle Hysteresis on Heterogeneous Smooth Surfaces. Journal of Colloid and Interface Science, 168 (1), 40–46. doi: 10.1006/jcis.1994.1391
- Chen, Y. L., Helm, C. A., Israelachvili, J. N. (1991). Molecular Mechanisms Associated with Adhesion and Contact Angle Hysteresis of Monolayer Surfaces. JThe Journal of Physical Chemistry, 95 (26), 10736–10747. doi: 10.1021/j100179a041
- Dettre, R. H., Johnson, Jr. R. R. (1963). Contact Angle, Wettability and Adhesion. American Chemical Society, 43, 136.
- Lafuma A., Quere D. (2003). Superhydrophobic states. Nature materials, 2 (7), 457–460. doi: 10.1038/nmat924
- Quere, D. (2008). Wetting and Roughness. Annual Review of Materials Research, 38 (1), 71–99. doi: 10.1146/annurev.matsci.38.060407.132434
- Patankar, N. A. (2004). Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir, 20 (19), 8209–8213. doi: 10.1021/la048629t
- Patankar, N. A. (2012). Transition between superhydrophobic states on rough surfaces. Langmuir, 20 (17), 7097–7102. doi: 10.1021/la049329e
- Nosonovsky, M., Bhushan, B. (2008). Roughness–induced superhydrophobicity: a way to design non–adhesive surfaces. J. Phys.: Condens. Matter, 20 (22), 1–30. doi: 10.1088/0953-8984/20/22/225009
- Joanny, J., DeGennes, J. (1984). A model for contact angle hysteresis. The Journal of Chemical Physics, 81 (1), 552–562. doi: 10.1063/1.447337
- Anantharaju, N., Panchagnula, M., Vedantam, S., Neti, S., Tatic–Lucic, S. (2007). Effect of threephase contact line topology on dynamic contact angles on heterogeneous surfaces. Langmuir, 23 (23), 11673–11676. doi: 10.1021/la702023e
- Extrand, C. W. (1998). A Thermodynamic Model for Contact Angle Hysteresis. Journal of Colloid and Interface Science, 207 (1), 11–19. doi: 10.1006/jcis.1998.5743
- Extrand, C. W. (2002). Model for contact angle and hysteresis on rough and ultraphobic surfaces. Langmuir, 18 (21), 7991–7999. doi: 10.1021/la025769z
- Good, R. J. (1952). A thermodynamic derivation of Wenzel's modification of Young's equation for contact angle, together with a theory of hysteresis. Journal of the American Chemical Society, 74 (20), 5041–5042. doi: 10.1021/ja01140a014
- Johnson, R. E., Dettre. (1964). Contact Angle Hysteresis. R. H. J. Phys. Chem., 68 (7), 1744–1750.
- Nosonovsky, M., Bhushan, B. (2005). Roughness optimization for biomimetic superhydrophobic surfaces. Microsystem Technologies, 11 (7), 535–549. doi: 10.1007/s00542-005-0602-9
- Nakae, H., Inui, R., Hirata, Y., Saito, H. (1998). Effects of Surface Roughness on Wettability. Acta Materialia, 46 (7), 2313–2318. doi: 10.1016/s1359-6454(97)00387-x
- Zhang, J., Xue, L., Han, Y. (2005). Fabrication Gradient Surfaces by Changing Polystyrene Microsphere Topography. Langmuir, 21 (1), 5–8. doi: 10.1021/la047584t
- Ge, H., Song, Y., Jiang, L., Zhu, D. (2006). One–step preparation of polystyrene colloidal crystal films with structural colors and high hydrophobicity. Thin Solid Films, 515 (4), 1539–1543. doi: 10.1016/j.tsf.2006.04.022
- Synytska, A., Ionov, L., Dutschk, V., Stamm, M., Grundke, K. (2008). Wetting on Regularly Structured Surfaces from “Core–Shell” Particles: Theoretical Predictions and Experimental Findings. Langmuir, 24 (20), 11895–11901. doi: 10.1021/la8010585
- Raj, R., Enright, R., Zhu, Y., Adera, S., Evelyn, N. (2012). Wang Unified Model for Contact Angle Hysteresis on Heterogeneous and Superhydrophobic Surfaces. Langmuir, 28 (45), 15777−15788. doi: 10.1021/la303070s
- Shibuichi, S., Onda, T., Satoh, N., Tsujii, K. (1996). Super Water–Repellent Surfaces Resulting from Fractal Structure. The Journal of Physical Chemistry, 100 (50), 19512–19517. doi: 10.1021/jp9616728
- Cottin–Bizonne, C., Barentin, C., Bocquet, L. (2012). Scaling laws for slippage on superhydrophobic fractal surfaces. Phisics of fluids, 24 (1), 13–27. doi: 10.1063/1.3674300
- Synytska, A., Ionov, L., Grundke, K., Stamm, M. (2009). Wetting on Fractal Superhydrophobic Surfaces from “Core–Shell” Particles: A Comparison of Theory and Experiment. Langmuir, 25 (5), 3132–3136. doi: 10.1021/la803120d
- Jopp, J., Grull, H., Yerushalmi–Rozen, R. (2004). Wetting Behavior of Water Droplets on Hydrophobic Microtextures of Comparable Size. Langmuir, 20 (23), 10015–10019. doi: 10.1021/la0497651
- Campos, R., Guenthner, A. J., Meuler, A. J., Tuteja, A., Cohen, R. E., McKinley, G. H., Haddad, T. S., Mabry, J. M. Superoleophobic Surfaces through Control of Sprayed–on Stochastic Topography. Available at: http://web.mit.edu/nnf/publications/GHM187.pdf
- Whitehouse, D. J., Archard, J. F. (1970). The Properties of Random Surfaces of Significance in their Contact. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 316 (1524), 97–121. doi: 10.1098/rspa.1970.0068
- Greenwood, J. A., Williamson, J. B. P. (1966). Contact of Nominally Flat Surfaces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 295 (1442), 300–319. doi: 10.1098/rspa.1966.0242
- Vinogradova, O. I., Yakubov, G. E. (2006). Surface roughness and hydrodynamic boundary conditions. Physical Review E., 73 (4), 5. doi: 10.1103/physreve.73.045302
- Kunert, C., Harting, J. (2008). Simulation of fluid flow in hydrophobic rough microchannels. International Journal of Computational Fluid Dynamics, 22 (7), 475–480. doi: 10.1080/10618560802238234
- Herminghausa, S. (2012). Wetting, spreading, and adsorption on randomly rough surfaces. The European Physical Journal E, 35 (6), 1–10. doi: 10.1140/epje/i2012-12043-8
- Long, J., Hyder, M. N., Huang, R. Y. M., Chen, P. (2005). Thermodynamic modeling of contact angles on rough, heterogeneous surfaces. Advances in Colloid and Interface Science, 118 (1-3), 173–190. doi: 10.1016/j.cis.2005.07.004
- Kusumaatmaja, H., Yeomans, J. M. (2007). Modeling Contact Angle Hysteresis on Chemically Patterned and Superhydrophobic Surfaces. Langmuir, 23 (11), 6019–6032. doi: 10.1021/la063218t
- Yang, X. F. (1995). Equilibrium contact angle and intrinsic wetting hysteresis. Applied Physics Letters, 67 (15), 2249–2251. doi: 10.1063/1.115119
- Extrand, C. W, Kumagai Y. (1995). Liquid drops on an inclined plane—the relation between contact angles, drop shape, and retentive force. Journal of Colloid and Interface Science, 170 (2), 515–521. doi: 10.1006/jcis.1995.1130
- De Gennes, P. G. (1985). Wetting – statics and dynamics. Reviews of Modern Physics, 57 (3), 827–863. doi: 10.1103/revmodphys.57.827
- Bormashenko, E., Bormashenko, Y., Whyman, G., Pogreb, R., Musin, A., Jager, R., Barkay, Z. (2008). Contact Angle Hysteresis on Polymer Substrates Established with Various Experimental Techniques, Its Interpretation, and Quantitative Characterization. Langmuir, 24 (8), 4020–4025. doi: 10.1021/la703875b
- Bico, J., Thiele, U., Que´re´, D. (2002). Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206 (1-3), 41–46. doi: 10.1016/s0927-7757(02)00061-4
- Bormashenko, E., R. Pogreb, G. Whyman, M. Erlich. (2007). Cassie–Wenzel Wetting Transition in Vibrating Drops Deposited on Rough Surfaces: Is the Dynamic Cassie–Wenzel Wetting Transition a 2D or 1D Affair? Langmuir, 23 (12), 6501–6503. doi: 10.1021/la700935x
- Xiu, Y., Zhu, L., Hess, D.W., Wong, C. P. (2007). Hierarchical Silicon Etched Structures for Controlled Hydrophobicity/Superhydrophobicity. Nano Letters, 7 (11), 88–93. doi: 10.1021/nl0717457
- Rothstein, J. P. (2010). Slip on Superhydrophobic Surfaces. Annual Review of Fluid Mechanics, 42 (1), 89–109. doi: 10.1146/annurev-fluid-121108-145558
- Xiu, Y., Zhu, L., Hess, D. W., Wong, C. P. (2008). Relationship between Work of Adhesion and Contact Angle Hysteresis on Superhydrophobic Surfaces. Journal of Physical Chemistry C, 112 (30), 11403–11407. doi: 10.1021/jp711571k
- Bushan, B., Jung, Y. C., Koch, K. (2009). Micro–, nano– and hierarchical structures for superhydrophobicity, self–cleaning and low adhesion. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367 (1894), 1631–1672. doi: 10.1098/rsta.2009.0014
- Kusumaatmaja H., Yeomans J. M. (2007). Modeling Contact Angle Hysteresis on Chemically Patterned and Superhydrophobic Surfaces. Langmuir, 23 (11), 6019–6032. doi: 10.1021/la063218t
- He, B., Patankar, N. A., Lee, J. (2003). Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir, 19 (12), 4999–5003. doi: 10.1021/la0268348
- Bico, J., Marzolin, C., Que´re´. (1999). Pearl drops. Europhysics Letters (EPL), 47 (2), 220– 226. doi: 10.1209/epl/i1999-00548-y
- Yoshimitsu, Z., Nakajima, A., Watanabe, T., Hashimoto, K. (2002). Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets. Langmuir, 18 (15), 5818. doi: 10.1021/la020088p
- Nosonovsky, M., Bhushan, B. (2007). Hierarchical roughness makes superhydrophobic surfaces stable. Microelectronic Engineering, 84 (3), 382–386. doi: 10.1016/j.mee.2006.10.054
- Kim, J. G., Choi, H. J., Park, K. C., Cohen, R. E., McKinley, G. H., Barbastathis, G. (2014). Multifunctional Inverted Nanocone Arrays for Non–wetting, Self–cleaning Transparent Surface with High Mechanical Robustness. Small, 10 (12), 2487–2494. doi: 10.1002/smll.201303051
- Tuteja A., Choi, W., McKinley, G. H., Cohen, R. E., Rubner, M. F. (2008). Design Parameters for Superhydrophobicity and Superoleophobicity. MRS Bulletin, 33 (08), 752–758. doi: 10.1557/mrs2008.161
- Lee, Y., Park, S. H., Kim, K. B., Lee, J. K. (2007). Fabrication of Hierarchical Structures on a Polymer Surface to Mimic Natural Superhydrophobic Surfaces. Advanced Materials, 19 (17), 2330–2335. doi: 10.1002/adma.200700820
- Guo, Z., Liu., W. (2007). Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Science, 172 (6), 1103–1112. doi: 10.1016/j.plantsci.2007.03.005
- Nosonovsky, M., Bhushan, B. (2007). Multiscale friction mechanisms and hierarchical surfaces in nano– and bio–tribology. Materials Science and Engineering: R: Reports, 58 (3-5), 162–193. doi: 10.1016/j.mser.2007.09.001
- Nosonovsky, M., Bhushan, B. (2008). Multiscale dissipative mechanisms and hierarchical surfaces: friction, superhydrophobicity, and biomimetics. Heidelberg, Germany: Springer, 278. doi: 10.1007/978-3-540-78425-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Анна Владимировна Придатко, Алексей Владимирович Миронюк, Валентин Анатольевич Свидерский
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.