Development of methods for neutralizing the free fatty acids of fatty coriander oil

Authors

  • Вікторія Сергіївна Калина National Technical University “Kharkov Polytechnic Institute” 21 Frunze str., Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-0359-1745
  • Марина Луценко Dnepropetrovsk state agrarian and economic university 25 Voroshiliva str., Dnepropetrovsk, Ukraine, 49000, Ukraine https://orcid.org/0000-0002-0924-5157
  • Федір Федорович Гладкий National Technical University “Kharkov Polytechnic Institute” 21 Frunze str., Kharkov, Ukraine, 61002, Ukraine
  • Олена Анатоліївна Литвиненко National Technical University “Kharkov Polytechnic Institute” 21 Frunze str., Kharkov, Ukraine, 61002, Ukraine
  • Катерина Вікторівна Куниця National Technical University “Kharkov Polytechnic Institute” 21 Frunze str., Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-5577-7026

DOI:

https://doi.org/10.15587/1729-4061.2015.51053

Keywords:

fatty coriander oil, enzymatic esterification, adsorption, free fatty acids, acid number, ethanol, glycerin, anionite

Abstract

In the present paper, the information on the process of enzymatic conversion of free fatty acids in fatty coriander oil (FCO) was considered. Enzymatic esterification was performed according to the following algorithm: FCO was treated with enzymes, purified by adsorbents with a variation of the basic process parameters, alcohols of a different nature were added. The quality of the samples of the purified FCO was determined by the basic physicochemical index - acid number.

Ethanol (96 %) and glycerin (99.3 %) were used as reagents. Enzyme preparations (manufactured by «Novozymes» Denmark): Novozym 435, Lipozym TL IM were used as catalysts.

Using the FCO fining methods, given in the paper, it was managed to reduce the acid number of oil from 17.0 mg KOH/g to 0.3 mg KOH/g. It was proved that using vacuum is an appropriate technological stage of enzymatic esterification of the FCO.

Using molecular sieves for the FCO fining to reduce the content of water formed in the esterification and, thus, improve the conditions for the conversion reaction of free fatty acids - reduced acid number to less than 2.1 mg KOH/g was investigated. It was found that when adding molecular sieves in the FCO - reagent - enzyme system, water removal is not observed and their use does not decrease the acid number of oil at all.

The fatty acid composition of the sample of the initial FCO was investigated by means of gas-liquid chromatography. It was found that in the initial FCO the percentage of the main fatty acids are the following: palmitic - 2.4 %, petroselinum - 71.3 %, oleic - 7.8 %, linoleic - 15.6 %.

The authors have examined the process of adsorption of free fatty acids from the esterified FCO using the anionite EDE - 10P. It was found that the increase in the ratio of FCO to the adsorbent does not result in complete removal of free fatty acids and, accordingly, sufficient decrease in the acid number of the purified oil.

Author Biographies

Вікторія Сергіївна Калина, National Technical University “Kharkov Polytechnic Institute” 21 Frunze str., Kharkov, Ukraine, 61002

Postgraduate student

Department of Technology of fats and fermentation products

Марина Луценко, Dnepropetrovsk state agrarian and economic university 25 Voroshiliva str., Dnepropetrovsk, Ukraine, 49000

PhD

Department of Technology of storage and processing of agricultural products

Федір Федорович Гладкий, National Technical University “Kharkov Polytechnic Institute” 21 Frunze str., Kharkov, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Technology of fats and fermentation products

Department of Technology of fats and fermentation products

Олена Анатоліївна Литвиненко, National Technical University “Kharkov Polytechnic Institute” 21 Frunze str., Kharkov, Ukraine, 61002

PhD

Department of Technology of fats and fermentation products

Катерина Вікторівна Куниця, National Technical University “Kharkov Polytechnic Institute” 21 Frunze str., Kharkov, Ukraine, 61002

PhD, Scientific researcher

Department of Technology of fats and fermentation products

References

  1. Zaiceva, L. V. (2010). Rol razlichnukh gurnukh kiclot v putanii cheloveka I pri proizvodstve pishevykh produktov. Maslogyrovaya promyshlenost, 5, 11–15.
  2. Rybak, G. M., Romanenko, L.R., Korableva, O.A. (1989). Prianosti. Urogai, 44–45.
  3. Kiralan, M. Ipek, A. (2009)ю Fatty acid and volatile oil composition of different coriander registered varieties cultivated in Turkey. Chemistry of Natural Compounds, 45 (1), 100–102. doi: 10.1007/s10600-009-9240-2
  4. Romadon, M. F., Morsel, J. T. (2002). Oil composition of coriander (Coriandrum sativum L.) fruit-seeds. European Food Research and Technology, 3 (215), 204–209. doi: 10.1007/s00217-002-0537-7
  5. Oseiko, M., Kishenko, V., Levchuk, I. (2008). Inovaciyni tekhnologii ta bezpechnist oliynogyrovoi produkcii. Charchova I pererobna promyslovist, 3, 22–23.
  6. Agostoni, C., Berni Canani, R., Fairweather-Tait, S., Heinonen, M., Korhonen, H., La Vieille, S. et. al. (2013). Scientific Opinion on the safety of “coriander seed oil” as a Novel Food ingredient. EFSA Journal, 11 (10), 20. doi: 10.2903/j.efsa.2013.3422
  7. Rgekhin, V. P., Sergeev, A. G. (1967). Rukovodstvo po metodam isledovaniya, tekhnologicheskomu kontrolyu i uchetu proizvodstva v maslogyrovoi promychlenosti. Specialnye metody analiza I tekhnokhimicheskiy control rafinacii I gidrogenizacii gyrov i masel v proizvodstve gyrov, VNIIG, Vol. III, 494.
  8. Paronyan, V. H. (2006). Tehnologiya gyrov i gyrozameniteley. DeLi print, 760.
  9. Sergeev, A. G. (1973). Rukovodstvo po tehnologii polycheniya i pererabotke rastitelnuh masel i gyrov. Rafinaciya gyrov i masel, VNIIG, Vol. II, 350.
  10. Aznauryan, M. P., Kalasheva, N. A., Anisimova, A. G., Podobragnykh, A. N., Branc, M. A. (1988). Patent RF N 2101336, С11В3/00. Sposob ochistki gyrnogo corianrovogo masla. Declareted 26.03.1993; published 10.01.1998.
  11. Kalyna, V. S., Gladkiy, F. F., Lytsenko, М. V., Shlyapnukov, V. О. (2014). Patent UA N 9213, MPK С11В 3/00. Sposib rafinacii gyrnoyi coriandrovoii olii. а 2013 15532; declareted 30.12.2013; published 11.08.14, № 15.
  12. Shimada, Y., Nagao, T., Hamasaki, Y., Akimoto, K., Sugihara, A., Fujikawa, S. et. al. (2000). Enzymatic synthesis of structured lipid containing arachidonic and palmitic acids. Journal of the American Oil Chemists' Society, 77 (1), 89–93. doi: 10.1007/s11746-000-0014-8
  13. Nekrasov, P. O., Plakhotna, U. M. (2011). Improvement of fat enzymatic hydrolysis technology. Eastern-European Journal of Enterprise Technologies, 4/6 (52), 18–23. Available at: http://journals.uran.ua/eejet/article/view/1417/1315
  14. Zaiceva, L. V. (2011). Ispolzovanie enzimnoi pereeterifikacii dlya modifikacii masel. Maslogyrovaya promyshlenost, 2, 26–29.
  15. Severin, E. S., Aleinikova, T. L., Osipov, E. V., Silaeva, S. A. (2008). Biologicheskaya khimiya. Medicinskoe informacionnoe agentstvo, 29–42.
  16. Kirk, O., Borchert, T. V., Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13 (4), 345–351. doi: 10.1016/s0958-1669(02)00328-2
  17. Balaev, I. S., Demina, N. S. (2003). Patent RU N 2205692, С 02 F 1/42. Sposob ionoobmenoi ochistki vody, sodergashei organicheskie veshestva, s protivotochnoi regeneraciei ionoobmenykh materialov. Declareted 06.02.2002; published 10.06.2003.
  18. Filtry anionitnye (1973). Vodopodgotovka. Available at: http://mash-xxl.info/info/268681/

Published

2015-10-16

How to Cite

Калина, В. С., Луценко, М., Гладкий, Ф. Ф., Литвиненко, О. А., & Куниця, К. В. (2015). Development of methods for neutralizing the free fatty acids of fatty coriander oil. Eastern-European Journal of Enterprise Technologies, 5(6(77), 10–15. https://doi.org/10.15587/1729-4061.2015.51053

Issue

Section

Technology organic and inorganic substances