Influence of microwave radiation on temperature characteristics of dehydration

Authors

  • Игорь Михайлович Рыщенко National Technical University “Kharkov Polytechnic Institute” 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine
  • Александр Иванович Русинов National Technical University “Kharkov Polytechnic Institute” 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine
  • Николай Андреевич Блинков National Technical University «Kharkiv Polytechnic Institute» str. Frunze 21, Kharkov, Ukraine, 61002, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.51359

Keywords:

crystal hydrates, radiation, recovery, ice, phase, lattice, pressure, temperature

Abstract

In crystal hydrates of inorganic salts, water is in a particular, bound state. The crystal lattice of each crystal hydrate is individual, and by default it should be similar to the structure of the water ice Ih, which is not observed in practice.

It is assumed that the water of crystallization with the crystal hydrate is frozen water in other forms of ice that correspond to specific phases of ice, and salt simulates the application of high pressure. Due to the study of weight loss, the assumption is confirmed. Using microwave radiation also allows to reduce the adsorbent recovery temperature, which is very important for lower energy expenditure. So, many crystal hydrates are melted in the water of crystallization, which makes it necessary to evaporate water from it, and can also fill in the recovery installation.

Microwave radiation is weakly absorbed directly by ice because of the symmetry in it, and weak intermolecular vibration, in depth, and, therefore, it starts from the surface. The appearance of the salt in the water of crystallization can also be presented in the form of ice, and this significantly improves the absorptivity and allows the water of crystallization to volatilize, which provides recovery. Thus, using a microwave oven as an alternative method of recovery is highly relevant.

Author Biographies

Игорь Михайлович Рыщенко, National Technical University “Kharkov Polytechnic Institute” 21 Frunze str., Kharkiv, Ukraine, 61002

Doctor of Technical Scienses, Professor

Departament of General and Inorganic Chemistry

Александр Иванович Русинов, National Technical University “Kharkov Polytechnic Institute” 21 Frunze str., Kharkiv, Ukraine, 61002

PhD, assistant professor

Departament of General and Inorganic Chemistry

Николай Андреевич Блинков, National Technical University «Kharkiv Polytechnic Institute» str. Frunze 21, Kharkov, Ukraine, 61002

Postgraduate

Department of General and Inorganic Chemistry

References

  1. Borisenko, E. M. (1989). Izuchenie kinetiki degidratatsii nekotoryh kristallogidratov. Minsk: Belorusskii ordena trudovogo krasnogo znameni gosudarstvennyi institut im. V. I. Lenina, 5–10.
  2. Kariakyn, A. V., Kryventseva, H. A. (1979). Sostoianye vodu v orhanycheskykh y neorhanycheskykh soedynenyiakh. Moscow, 126–129.
  3. Krestov, H. A. (1984). Termodynamyka yonnikh protsessov v rastvorakh, second edition. Khymycheskaia entsyklopedyia, Vol. 1. Saint-Petersburg, 86–88.
  4. Uolly, Dzh., Khaimen, Kh. Kh., Khollanda, K. Dzh. (1971). Nevodnuye rastvorytely. Moscow: Chemistrya, 65–70.
  5. Barannyk, V. P., Emelianov, V. E., Makarov, V. V. (2005). Ethylovyi spyrtbv motornom toplyve. Proyzvodstvo y oborot denaturyrovannoi spyrtosoderzhashchei produktsyy. Moscow: Rau-University, 235–240.
  6. Sydorov, A. Y.; Torocheshnykov, N. S. (Ed.) (1972). Adsorbtsyonnaia osushka hazov. Moskovskyi khymyko-tekhnolohycheskyi ynstytut im. D. Y. Mendeleeva, 68–82.
  7. Sarycheva, E. A. (2007). Fyzyko-khymycheskoe yssledovanye hydratatsyy y dehydratatsyy krystallohydratov, fosfatov y sulfata kaltsyia s uchastyem parov vody. Moscow, 16–19.
  8. Havrylova, N. D., Davydova, A. A. (2013). Electroprovodnost, dielektricheslaya pronytsaemost v electricheskom module krystallohydratov formyata erbyia na chastotakh 0,07-1 MHts. Vestnyk Moskovskoho hosudarstvennoho unyversyteta im.Lomonosova. Seryia 3. Fyzyka, Astronomyiat, 68 (3), 45–52.
  9. Fyrsova, L. L. (2010). Prochnost hranul na osnove solvatov sulfata kaltsyia. Vestnyk Moskovskoho hosudarstvennoho unyversyteta im. Lomonosova, Seryia 5, Khymyia, 51 (4), 333–336.
  10. Hryhoreva, V. V., Samyilenko, V. M., Sych, A. M. (1991). Obshchaia khymyia. Uchebnyk. Second edition. Kyiv: Visshaia shkola, 481.
  11. Myshchenko, Y. T. (2007). Skvazhynnaia dobucha nefty. Yzdanye vtoroe, yspravlennoe. Moscow: RHU ym. Hubkyna, 530.
  12. Horonovskyi, Y. T., Nazarenko, Yu. P., Nekriach, E. F. (1987). Kratkyi spravochnyk po khymyy. Piatoe yzdanye, yspravlennoe y dopolnennoe. Kyiv: Naukova Dumka, 600–603.
  13. Myner, B. (2012). Fazu lda. Moscow-Sankt-Peterburh: Eksmo-Domyno, 230–234.
  14. Kuklyn, A. Y., Utrobyn, P. K., Yvankov, O. Y. (2009). Ustanovka visokoho hydrostatycheskoho davlenyia na malouhlovom spektrometre YuMO. Dubna, Obyedynennui unstytut yadernukh usloviy, 512–517.
  15. Chaplin, M. (2009). Water Phase Diagram.Water Structure and Science. Wales, England, 344–346.
  16. Murray, B. J., Knopf, D. A., Bertram, A. K. (2005). The formation of cubic ice under conditions relevant to Earth's atmosphere. Nature, 434 (7030), 202–205. doi: 10.1038/nature03403
  17. Falenty, A., Hansen, T. C., Kuhs, W. F. (2014). Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature, 516 (7530), 231–233. doi: 10.1038/nature14014

Published

2015-10-16

How to Cite

Рыщенко, И. М., Русинов, А. И., & Блинков, Н. А. (2015). Influence of microwave radiation on temperature characteristics of dehydration. Eastern-European Journal of Enterprise Technologies, 5(6(77), 29–34. https://doi.org/10.15587/1729-4061.2015.51359

Issue

Section

Technology organic and inorganic substances