Identification of medicobiological parameters system of clinical monitoring for family medicine

Authors

  • Оксана Олександрівна Сітнікова National Technical University «Kharkiv Polytechnic Institute» 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-2417-8220
  • Максим Валентинович Почебут Kharkiv National University of Radioelektronics 14 Lenina ave., Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-4412-2478

DOI:

https://doi.org/10.15587/1729-4061.2015.51401

Keywords:

clinical monitoring, diagnostic device, Health Grid, e-Health architecture, identification, medico-biological parameters

Abstract

The paper examines the problems associated with collecting and processing the data on medico-biological parameters of patients. These problems are considered in terms of solving the problem of clinical monitoring. Implementing the clinical monitoring process suggests that a family doctor should have modern diagnostic equipment. Such equipment can collect primary medical data and transmit them to the server side for the automated processing.

Health Grid infrastructure technologies enable distributed data processing of a large number of patients. These patients may relate to different doctors from different medical institutions. Such an approach allows to collect a large amount of statistical data that can be used for the individual needs of a certain patient and comprehensive epidemiological analysis in the country or in a particular area. The open e-Health architecture platform ensures the operation of sensors that collect medical data of patients during clinical monitoring. These data can be transmitted via a wired or wireless connection to the microcontroller and the server. Processed data from many patients allow to build intelligent algorithms that detect dependencies between the values of medico-biological parameters and diagnosis. In addition, various medical research data can be collected from the web space. These two types of data can be used for developing collaborative recommendation systems. Such systems are some kind of decision support systems that provide family doctors with the possible options of diagnoses and useful recommendations in a convenient form and with a given level of reliability and accuracy.

Author Biographies

Оксана Олександрівна Сітнікова, National Technical University «Kharkiv Polytechnic Institute» 21 Frunze str., Kharkiv, Ukraine, 61002

Senior lecturer

Department of hardware and programming

Максим Валентинович Почебут, Kharkiv National University of Radioelektronics 14 Lenina ave., Kharkiv, Ukraine, 61002

Associate professor, PhD

Department of software engineering

References

  1. Melnik, K. V., Ershova, S. I. (2011). Problemyi i osnovnyie podhodyi k resheniyu zadachi meditsinskoy diagnostiki. Sistemi obrobki Informatsiyi, 2, 244–248.
  2. Kaniovskyi, Y., Benkner, S., Borckholder, C., Wood, S., Nowakowski, P., Saglimbeni, A., Lobo, T. P. (2015). A semantic cloud infrastructure for data-intensive medical research. IJBDI, 2 (2), 91. doi: 10.1504/ijbdi.2015.069091
  3. Latishev, E. E. (2005). Formuvannya sistemi sіmeynoyi meditsini v Ukrainі. Kyiv, 176.
  4. Mintser, O. P. (Ed.) (2003). Informatsіynі tehnologiyi v ohorons zdorov’ya s praktichnsy meditsins. Kyiv: Vischa shkola, 350.
  5. Kačmar, V. O. (2010) Medyčni informacijni systemy – stan rozvytku v Ukraïni. Ukraïnskyj žurnal telemedycyny ta medyčnoï telematyky, 8 (1), 12–17.
  6. Mincer, O. P. (2015). Konceptualʹno-technolohični pidchody v stvorenni jedynoho medyčnoho osvitnʹoho prostoru. Medyčna informatyka ta inženerija, 1, 5–8.
  7. Znamenska, M. A. (2015). Informatyzacija zakladiv ochorony zdorov″ja jak osnova efektyvnych komunikacij v systemi ochorony zdorov″ja. Medyčna informatyka ta inženerija, 2, 85–88.
  8. Prokopčuk, Ju. A. (2007). Yntellektualnye medycynskye systemy: formalno-lohyčeskyj uroven. Dnepropetrovsk: YTM NANU y NKAU, 259.
  9. Orlov, A. I. (2014). Matematicheskie metodyi teorii klassifikatsii. Nauchnyiy zhurnal KubGAU, 95, 23–45.
  10. Cherezov, D. S., Tyukachev, N. A. (2009). Obzor osnovnyih metodov klassifikatsii i klasterizatsii dannyah. Vestnik VGU. Seriya: sistemnyiy analiz i informatsionnyie tehnologii, 2, 25–29.
  11. Stenlecz`, J. I. (2013). Fizy`chne ta matematy`chne modelyuvannya termody`namichny`x metodiv diagnosty`ky` stanu zdorov″ya lyudy`ny` Opty`ko-elektronni informacijno-energety`chni texnologiyi, 1, 66–72.
  12. Webster, J., Clark, J. (2004). Meditsinskie priboryi. Razrabotka i primenenie. Moscow: Meditsinskaya kniga, 652.
  13. Kramme, R., Hoffmann, K.-P., Pozos, R. S. (Eds.) (2011). Springer Handbook of Medical Technology. Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-540-74658-4
  14. Bronzino, J. D., Peterson, D. R. (2014). Medical Devices and Human Engineering Four Volume Set. CRC Press.
  15. Becchetti, C., Neri, A. (2013). Medical instrument design and development: from requirements to market placements. JohnWiley & Sons Ltd, 891.
  16. Rykov, S. A., Orlova, N. M., Kosteczkaya, A. A. (2013). Medyko-socyalnij monytoryng v systeme oxrani zrenya shkolnykov. Oftalmologiya. Vostochnaya Evropa, 2, 105–111.
  17. Lytvynenko, M. V. (2015). Pryncypy nacionalnoji systemy oxorony zdorovja v Ukrajini. Teorija ta praktyka dergavnoho upravlinnja, 2 (49), 198–205.
  18. Firsova, O. (2011). Systema oxorony zdorovja Norvehiji, osoblyvosti jiji orhanizaciji na municypalnomu rivni: dosvid dlja Ukrajiny. Ekonomika ta derzava, 1, 100–104.
  19. Vysockaja, E. V., Strashnenko, A. N., Synenko, S. A., Demin, Ju. A. (2012). Informacyonnaja systema rannej dyahnostyky pervychnoj otkritouholnoj hlaukomy. Radioelektronni i kompjuterni systemy, 1 (53), 105–109.
  20. Kusek, J. Z., Rist, R. C. (2004) Ten steps to a results-based monitoring and evaluation system: a handbook for development practitioners. Washington, DC: The World Bank, 248.
  21. Cherednichenko, O., Yanholenko, O., Iakovleva, O., Kustov, O. (2014). Models of Research Activity Measurement: Web-Based Monitoring Implementation. Lecture Notes in Business Information Processing, 193, 75–87. doi: 10.1007/978-3-319-11373-9_7
  22. Liu, B. (2011) Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 2nd Edition. Springer, 622. doi: 10.1007/978-3-642-19460-3
  23. e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi. Biometric/Medical Applications. Available at: https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical
  24. Agahanyan, T. M. (2010). Elektronnyie ustroystva v meditsinskih priborah. Moscow: NIYaU MIFI, 480.

Published

2015-10-20

How to Cite

Сітнікова, О. О., & Почебут, М. В. (2015). Identification of medicobiological parameters system of clinical monitoring for family medicine. Eastern-European Journal of Enterprise Technologies, 5(9(77), 31–36. https://doi.org/10.15587/1729-4061.2015.51401

Issue

Section

Information and controlling system