Development and analysis of neural networks to predict the efficiency parameters of regenerator checker of glass furnace

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.55482

Keywords:

glass furnace, regenerator, checker, refractory, prediction, neural networks, activation function

Abstract

The basic modern types of checkers and refractory materials for regenerative heat exchangers of glass furnaces were described. Operating features of using refractory materials of the checker depending on the purpose and the height of the regenerator design were given.
To solve the inverse problem of predicting the regenerator parameters and classifying the refractory material of the checker depending on the coolant temperature at the checker flue outlet, the methods of neural network programming were applied, and a neural network based on multi-layer perceptron was created. The structure of this neural network was analyzed, the patterns of using different types of activation functions to solve various prediction problems were identified.
The advantages of neural network models for the successful solution of prediction problems and classification of parameters of regenerative heat exchangers compared to existing finite-difference methods used for solving non-stationary problems of complex heat transfer in the checker were revealed.

Author Biographies

Артем Александрович Мигура, National Technical University «KPI» Frunze 21, Kharkiv, Ukraine, 61002

Jr. Researcher

Александр Вадимович Кошельник, IPMash NAS of Ukraine Str. Dm. Pozharskogo, 2/10, Kharkiv, Ukraine, 61046

Docent

References

  1. Alemasov, V. (1989). Matematicheskoe modelirovanie vysokotemperaturnykh protsessov v enerhosilovykh ustanovkakh. Moscow: Nauka, 256.
  2. Energopotreblenie v proizvodstve sortovogo, borosilikatnogo i specialnogo stekla (2005). Moscow: Ekolain, 16.
  3. Spravochnik po nailuchshim dostupnim techicheskim metodam ispolzovania energoresursov v stekolnoy promishlennosti: proizvodstvo sortovogo i tarnogo stekla (2005). Moscow: Ekolain, 16.
  4. Boyarunets, A. (2006). Uvelichevayushchaysya potrebnost ukrainskikh stekolnikh predriyatiy v visokokachestvenykh ogneuporakh otkryvaet dorogu importu. Metall, Metall+ogneupory, 14–24.
  5. Тrier, W. (1984). Glasschmelzoefen. Konstruktion und Betriebsverhalten. Berlin−Heidelberg−New York−Tokyo: Springer Verlag, 338. doi: 10.1007/978-3-642-82067-0
  6. Gramatte, W., Horak, J., Moegling, G., Triessing, A. (1986). Measurement of Convective Heat Transfer Coefficient for Various Checker Systems in Glass Tank Regenerators. Interceram, 35, 38–41.
  7. Akselrod, L. et. al. (2002). Sluzhba ogneuporov. Moscow: Intermet Inzhinirng, 656.
  8. Schep, J., Kers, G. (2010). Practical experiences with an all oxygen-gas fired container glass furnace during its 16 years campaign. 10th ESG Conference, May 30th–June 2nd. Magdeburg.
  9. Worrell, E., Galitsky, C., Masanet, E., Graus, W. (2008). Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers. Berkeley, 113. doi: http://dx.doi.org/10.2172/927883" target="_blank">10.2172/927883
  10. Lankhorst, A., van Limpt, H., Habraken, A., Beerkens. R. (2010). Simulation study of impact furnace design on specific energy consumption, NOx emission levels, volatilization rates and refractory corrosion. 10th ESG Conference. Magdeburg.
  11. Auchet, O. (2005). Contribution to simplified modeling of glass furnaces. Institut National Polytechnique de Lorraine. Lorraine.
  12. Koshel'nik, O. V. (2008). Vybir efektyvnyh konstruktyvnyh i ekspluatacijnyh parametriv regeneratyvnyh teploobminnykiv sklovarnyh pechej vannogo typu. Energotehnologii i resursosberezhenie, 6, 17–23.
  13. Koshelnik, A., Migura, A. (2013). Prognozirovanie i vybor racionalnyкh rezhimov raboty teploobmennikov sistem utilizacii teploty steklovarennyкh pechey. Innovacionnye puti modernizacii bazovyh otraslej promyshlennosti, jenergo- i resursosberezhenie, okhrana okruzhayushhey prirodnoy sredy. Sbornik trudov ІІ Mezhotraslevoy nauchno-prakticheskoi konferentsii molodykh uchenykh i specialistov. Кharkov: Energostal, 77–83.
  14. Heinlingestaed, W. (1928/29). Die Berechnung von Wärmespiechern. Arch. Eisenhüttenw, 2, 330.
  15. Rummel, K. (1930/31). Berechnung der Wärmespiechern. Arch. Eisenhüttenw, 4, 367.
  16. Schack. A., (1943/44). Die Berechnung der Regeneratoren. Arch. Eisenhüttenw, 17, 101–118.
  17. Stuke, B. (1948). Berechnung des Wärmeaustauches in Regeneratoren mit zylindrischen oder kegelförgmigen Füllmsterial. Angewandte Chemie, 20 (10), 262–268. doi: 10.1002/ange.19480201004
  18. Koshelnіk, O. (1999). Universalnyj vychislitelnyj kompleks dlya modelirovaniya teplovykh rezhimov regeneratorov steklovarennykh pechey. Integrovani tekhnologii ta energozberegennya, 2, 88–95.
  19. Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York: MacMillan Publishing Co., 696.
  20. Bishop, C. (1995). Neural networks for pattern Recognition. Oxford: Clarendon Press, 482.

Published

2015-12-25

How to Cite

Мигура, А. А., & Кошельник, А. В. (2015). Development and analysis of neural networks to predict the efficiency parameters of regenerator checker of glass furnace. Eastern-European Journal of Enterprise Technologies, 6(8(78), 29–33. https://doi.org/10.15587/1729-4061.2015.55482

Issue

Section

Energy-saving technologies and equipment