Ensuring the invariance of the pattern recognition system of the marine vessel systems in the process of fishing

Authors

  • Александр Александрович Железняк Kerch State Maritime Technological University Ordzhonikidze 82, Kerch, Russia, Russian Federation https://orcid.org/0000-0001-8693-7440
  • Юрий Федорович Каторин Admiral Makarov State University of Maritime and Inland Shipping Str. Dvina, d. 5/7, St. Petersburg, Russia, 198035, Russian Federation https://orcid.org/0000-0002-7820-3436
  • Надежда Павловна Сметюх Kerch State Marine Technical University Str. Ordzhonikidze, 82, Kerch, Russia, 298309, Russian Federation https://orcid.org/0000-0002-7060-7161
  • Владимир Алексеевич Доровской Kerch State Maritime Technological University Ordzhonikidze 82, Kerch, Russia, Russian Federation https://orcid.org/0000-0002-2716-9610
  • Сергей Григорьевич Черный Kerch State Marine Technical University Str. Ordzhonikidze, 82, Kerch, Russia, 298309, Russian Federation https://orcid.org/0000-0001-5702-3260

DOI:

https://doi.org/10.15587/1729-4061.2015.55696

Keywords:

digital video information, fish shoal, identification, information system, clustering

Abstract

Analysis of the existing algorithms for processing and transmitting video information for decision-making in information systems has shown that the existing algorithms do not consider the objective identification moments on the fishing fleet vessels. The problems of the impossibility of visualization of real images, clear separation of the object and the background, spatial arrangement of the points in the automated segmentation of digital images are displayed through the dependence by the features of adjacent frames in feature description methods.

This necessitated the development of more detailed algorithms for the digital video data analysis, devoid of these shortcomings.

This method involves the extraction of the contours of the object, which allowed to obtain a set of features and served as a basis for its analysis and recognition. Using the module of the normalized scalar product enabled to effectively solve the basic recognition problems - transfer, rotation and zooming of the object image.

The assessment methods of digital video information were investigated. The main result of this study was the development of a tool for an integrated objective quality assessment of the data transmitted. The feature of the developed tool is that it is integrated into the Scanmar model that allows to simulate the multimedia processing and transmission networks with the assessment of quality losses in real time.

The experiments, conducted using the developed tool, to assess the quality of video encoded by existing compression algorithms have shown that H.264 codec, which showed a higher video quality level than in similar compression by MPEG-4 and MJPEG codecs appears the most effective.

Author Biographies

Александр Александрович Железняк, Kerch State Maritime Technological University Ordzhonikidze 82, Kerch, Russia

Assistant

The Department of "Electrical equipment of ships and industrial automation"

Юрий Федорович Каторин, Admiral Makarov State University of Maritime and Inland Shipping Str. Dvina, d. 5/7, St. Petersburg, Russia, 198035

Doctor of  Engineering, senior lecturer

The department "Integrated information security"

Надежда Павловна Сметюх, Kerch State Marine Technical University Str. Ordzhonikidze, 82, Kerch, Russia, 298309

PhD student

Department of Electrical and Automation vessels

Владимир Алексеевич Доровской, Kerch State Maritime Technological University Ordzhonikidze 82, Kerch, Russia

Professor, Doctor of technical sciences.

The Department of "Electrical equipment of ships and industrial automation"

Сергей Григорьевич Черный, Kerch State Marine Technical University Str. Ordzhonikidze, 82, Kerch, Russia, 298309

Ph.D., Associate Professor

Department of Electrical and Automation vessels

References

  1. Duda, R. K. (1976). Raspoznavanye obrazov y analyz stsen. Moscow: Myr, 511.
  2. Bravermana, Е. M. (1969). Avtomatycheskyi analyz slozhnykh izobrazhenyi. Moscow: Nauka, 310.
  3. Tu, Dzh., Honsales, R. (1978). Pryntsypy raspoznavanyia obrazov. Moscow: Myr, 416.
  4. Honzales, P., Vuds, P., Eddyns, S. (2006). Tsyfrovaia obrabotka izobrazhenyi v srede MATLAB. Moscow: Tekhnosfera, 616.
  5. Vasylev, K. K., Tashlynskyi A. N. (1998). Otsenka parametrov deformatsyy mnohomernkh yzobrazhenyi, nabliudaemkh na fone pomekh. Trudy NTK ROAY-4. Novosibirsk, 261–264.
  6. Forsait, D. Pons, Zh. (2004). Kompiuternoe zrenye. Sovremennyi podkhod. Moscow: Vyliams, 928.
  7. Diukova, E. V., Peskov, N. V. (2002). Poisk informativnykh fragmentov opisanii obektov v diskretnykh protsedurakh raspoznavaniia. Vychislitelnaia matematika i matematichskaia fizika, 42 (5), 741–753.
  8. Hertz, T., Bar-Hillel, A., Weinshall, D. (2004). Boosting Margin Based Distance Functions for Clustering. Proceedings of the twenty-first international conference on Machine learning. New York, 50. doi: 10.1145/1015330.1015389
  9. Rozenfeld, A. (1987). Raspoznavanye i obrabotka izobrazhenii. Moscow: Myr, 274.
  10. Khemming, R. V. (1990). Tsyfrovye filtry. Moscow: Nauka, 268.
  11. SCANMAR. Available at: http://www.scanmar.no/en/Manuals/
  12. Chernyi, S. G., V. Yu. Budnik, (2015). Elements of the introspective analysis to evaluate software in navigation. Proceedings 22nd International Conference on Integrated Navigation Systems ICINS 2015. Saint Petersburg, 147–150.
  13. Zhang, D., Lu, G. (2003). A comparative study of curvature scale space and Fourier descriptors for shape-based image retrieval. Journal of Visual Communication and Image Representation, 14 (1), 39–57. doi: 10.1016/s1047-3203(03)00003-8
  14. Chernyi, S. (2015). The implementation of technology of multi-user client-server applications for systems of decision making support. Metallurgical and Mining Industry, 3, 60–65.
  15. Zhilenkov, A., Chernyi, S. (2015). Investigation performance of marine equipment with specialized information technology. Energy Procedia, 100, 1247–1252. doi: 10.1016/j.proeng.2015.01.490
  16. Chernyi, S. Zhilenkov, A. (2015). Analysis of complex structures of marine systems with attraction methods of neural systems. Metallurgical and Mining Industry, 1, 37–44.

Published

2015-12-22

How to Cite

Железняк, А. А., Каторин, Ю. Ф., Сметюх, Н. П., Доровской, В. А., & Черный, С. Г. (2015). Ensuring the invariance of the pattern recognition system of the marine vessel systems in the process of fishing. Eastern-European Journal of Enterprise Technologies, 6(2(78), 47–54. https://doi.org/10.15587/1729-4061.2015.55696

Issue

Section

Industry control systems