Phenomenological study of viscosity and density of alkali metal hydroxide solutions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.55920

Keywords:

concentrated alkaline solution, crystallographic radius, hydration of ions, density, viscosity, structure strengthening and structure breaking ions

Abstract

Alkaline solutions are widely used in many industries. For dilute solutions, physicochemical properties, such as solubility of gases, hydration numbers and mobility of ions are well known. A relatively new trend is using concentrated alkaline solutions to obtain ferrates. In these processes, the solution concentration of more than 8 M is used. Studying the processes of transport of matter and charge in concentrated alkaline solutions requires updating the data on the hydration numbers and radii of ions, the effect of concentration, viscosity and nature of electrolytes on them.

A method for determining the hydration numbers of alkali metal cations in hydroxide solutions, based on calculating the number of water moles per mole of cations at concentrations close to the limit was proposed. In addition, the influence of ions, strengthening and breaking the solution structure on the density and viscosity of alkali metal solutions was examined. It was shown that primary hydration of ions has the predominant impact on the solution viscosity in dilute solutions, and secondary - in concentrated.

It was found that a sharp increase in the solution viscosity with increasing concentration occurs with decreasing distance between ions up to 3,7×10-7 m.

At high concentrations, the solution density is higher in hydrated cations with smaller dimensions. High density of lithium hydroxide solutions in concentrations of from 2 to 4 M can be explained by the fact that the positively hydrated cation is embedded in the structure of water without a significant increase in its volume.

Author Biographies

Владимир Георгиевич Нефедов, Ukrainian State University of Chemical Technology Ukraine, Dnepropetrovsk, pr. Gagarina, 8.

Doctor of Technical Sciences, Professor

Department of electrochemical and environmental technologies

Александр Григорьевич Атапин, Ukrainian State University of Chemical Technology Ukraine, Dnepropetrovsk, pr. Gagarina, 8.

Graduate student

Department of electrochemical and environmental technologies

Дмитрий Аркадиевич Головко, Ukrainian State University of Chemical Technology Ukraine, Dnepropetrovsk, pr. Gagarina, 8.

Ph.D., Associate Professor

Department of Inorganic Chemistry

References

  1. Kleperis, J. (2012). Electrolysis. Rijeka: InTech, 290. doi: 10.5772/2820
  2. Ropp, R. C. (2013). Encyclopedia of the alkaline earth compounds. Elsevier, 1187. doi: 10.1016/B978-0-444-59550-8.01001-2
  3. Sharma, V. K (2008). Ferrates: synthesis, properties, and applications in water and wastewater treatment. Oxford: University Press, 509. doi: 10.1021/bk-2008-0985.fw001
  4. Alsheyab, M. Jia-Qia, J., Stanford, C. (2009). On-line production of ferrate with an electrochemical method and its potential application for wastewater treatment – A review. Journal of Environmental Management, 90 (3), 1350–1356. doi: 10.1016/j.jenvman.2008.10.001
  5. Lapicque, F., Valentin, G. (2002). Direct electrochemical preparation of solid potassium ferrate. Electrochemistry Communications, 4 (10), 764–766. doi: 10.1016/s1388-2481(02)00438-1
  6. He, W., Liu, G., Cui, W., Tang, Y. (2011). Effect of KIO3 additive on the direct electrosynthesis of K2FeO4. Russian Journal of electrochemistry, 47 (11), 1287–1292. doi: 10.1134/s1023193511110097
  7. Golovko, D. A., Nefedov, V. G., Girenko, D. V., Cherenkova, O. A. (2013). Elektroliz kontsentrirovannyih schelochnyih rastvorov. Soobschenie 1. Vliyanie faktorov na razmeryi vyidelyayuschihsya kislorodnyih puzyirey. Voprosyi himii i himicheskoy tehnologii, 4, 144–148.
  8. Nefedov, V. G., Atapin, A. G., Golovko, D. A. (2015). Elektroliz koncentrirovannih shelochnih rastvorov. 2. Faktori, vliyaushie na razmeri videlyaushihsya vodorodnih pyzirei. Voprosyi himii i himicheskoy tehnologii, 2, 51–52.
  9. Butyirskaya, E. V., Shaposhnik, V. A., Butyirskiy, A. M. (2004). Sravnitelnyiy analiz struktur gidratnyih obolochek kationov litiya i kaliya. Vestnik Samarskogo Gosudarstvennogo Universiteta. Seriya "Himiya, Biologiya, Farmatsiya", 2, 25–27.
  10. Butyirskaya, E. V., Shaposhnik, V. A., Butyirskiy, A. M., Rozhkova, A. G. (2006). Kvantovohimicheskiy raschet gidratatsii soley schelochnyih metallov. Zhurnal strukturnoi himii, 47, 89–93.
  11. Klugman, I. Yu. (1999). Ekvivalentnaya elektroprovodnost vodnyih rastvorov. Elektrohmiya, 1 (35), 85–92.
  12. Hall, S., McMahon, B. eds. (2005). International Tables for Crystallography. Vol. G: Definition and exchange of crystallographic data. Springer, 598. doi: 10.1107/97809553602060000107
  13. Dansurun, D. H. (1994). Opredelenie chisel gidratacii nekotorih otricatelnih ionov mass–spektrograficheskim metodom polekogo ispareniya ionov iz rastvora. Moscow, 29.
  14. Samoylov, O. Ya. (1957). Struktura vodnyih rastvorov elektrolitov i gidratatsiya ionov. Moscow: Izd-vo AN SSSR, 185.
  15. Klygman, I. U. (1997). Vyazkost rastvorov silnih elektrolitov tipa 1:1. Elektrohimiya, 33 (3), 337–345.
  16. Volkov, A. I., Zharskiy, I. M. (2005). Bolshoy himicheskiy spravochnik. Minsk: Sovremennya shkola, 608.
  17. Shishelova, T. I., Korzyn, N. L., Tolstoi, M. U. (2014). Perspektivy i napravleniya v issledovanii vodi. Mezhdunarodnyi jurnal prikladnyh i fundamentalnyh issledovanii, 3, 231–231.
  18. Sipos, P. M., Hefter, G., May, P. M. (2000). Viscosities and Densities of Highly Concentrated Aqueous MOH Solutions (M+ ) Na+, K+, Li+, Cs+, (CH3)4N+) at 25.0 °C. Journal of Chemical and Engineering Data, 45 (4), 613–617. doi: 10.1021/je000019h
  19. Zacepina, G. N. (1998). Fizicheskie svoistva i stryktyra vodi. Moscow: Izd-vo Mosk. In-ta, 184.

Published

2015-12-22

How to Cite

Нефедов, В. Г., Атапин, А. Г., & Головко, Д. А. (2015). Phenomenological study of viscosity and density of alkali metal hydroxide solutions. Eastern-European Journal of Enterprise Technologies, 6(6(78), 27–33. https://doi.org/10.15587/1729-4061.2015.55920

Issue

Section

Technology organic and inorganic substances