Effect of lattice expansion degree on properties and electromagnetic field response of InSe, GaSe and clathrates on their basis
DOI:
https://doi.org/10.15587/1729-4061.2015.56576Keywords:
intercalation, GaSe, InSe, impedance spectroscopy, magnetocapacitance effect, clathratesAbstract
The effect of the expansion degree of the crystal lattice of layered semiconductors GaSe and InSe on their properties and behavior in a constant magnetic field and under light is investigated. It is revealed that changes in the crystallographic parameters, as well as in the parameters of the energy spectrum of the defects that determine their kinetic and polarization properties at room temperature are not monotonic functions of the expansion degree. It is found that changes in response to the magnetic field and the light wave field have the same nature. As an example, the changes in the structure and physical properties of InSe<CS(NH2)2> clathrates for the 2- and 4-fold expansion, synthesized under different conditions are examined. Thus, the synthesis of these clathrates in a magnetic field leads to the appearance of positive and negative magnetoresistance for the 2- and 4-fold lattice expansion respectively. Opposite effects may be caused by asymmetry inversion of the density of states above and below the Fermi level depending on the expansion degree of the single crystal lattice.References
- Choy, J.-H., Paek, S.-M., Oh, J.-M., Jang, E.-S. (2002). Intercalative route to heterostructured nanohybrids. Current Applied Physics, 2 (6), 489–495. doi: 10.1016/s1567-1739(02)00163-3
- Choy, J.-H., Kwak, S.-Y., Park, J.-S., Jeong, Y.-J., Portier, J. (1999). Intercalative Nanohybrids of Nucleoside Monophosphates and DNA in Layered Metal Hydroxide. Journal of the American Chemical Society, 121 (6), 1399–1400. doi: 10.1021/ja981823f
- Gusev, A. I. (1998). Effects of the nanocrystalline state in solids. Uspekhi phisicheskih nauk, 168 (1), 55–83. doi: 10.3367/ufnr.0168.199801c.0055
- Len, Zh.-M. (1998). Supramolekulyarnaya himiya. Koncepcii i perspektivy. Novosibirsk: Nauka, 333.
- Stid, D. V., Etvud, D. L. (2007). Supramolekulyarnaya himiya. Moscow: Akademkniga, 896.
- Tien, C., Charnaya, E. V., Baryshnikov, S. V., Lee, M. K., Sun, S. Y., Michel, D., Böhlmann, W. (2004). Evolution of NaNO2 in porous matrices. Physics of the Solid State, 46 (12), 2301–2305. doi: 10.1134/1.1841397
- Ushakov, V. V., Aronin, A. S., Karavanskiĭ, V. A., Gippius, A. A. (2009). Formation and optical properties of CdSSe semiconductor nanocrystals in the silicate glass matrix. Physics of the Solid State, 51 (10), 2161–2165.
- Danishevskiĭ, A. M., Kyutt, R. N., Sitnikova, A. A., Shanina, B. D., Kurdyukov, D. A., Gordeev, S. K. (2009). Palladium clusters in nanoporous carbon samples: Structural properties. Physics of the Solid State, 51 (3), 640–644.
- Baryshnikov, S. V., Charnaya, E. V., Milinskiĭ, A. Yu., Stukova, E. V., Tien, C., Michel, D. (2010). Dielectric properties of crystalline binary KNO3–AgNO3 mixtures embedded in nanoporous silicate matrices. Physics of the Solid State, 52 (2), 392–396.
- Stasyuk, I. V., Velychko, O. V. (2014). The study of electronic states in highly anisotropic layered structures with stage ordering. Journal of physical studies, 18 (2/3), 2002-1–2002-9.
- Koshkin, V. M., Kukol’, V. V., Milner, A. P. (1977). Krystallycheskaya structura i nekotorye fizicheskie svojstva interkalirovannyh kristallov PbJ2. Fizika tverdogo tela, 19 (6), 1608–1612.
- Beneš, L., Votinský, J., Lošťý, P., Kalousová, J., Klikorka, J. (1985). Cobaltocene Intercalate of the Layered SnSe2. Physica Status Solidi (a), 89 (1), 1–4. doi: 10.1002/pssa.2210890144 .
- Bal, B., Ganguli, S., Bhattacharya, M. (1985). Intercalation of ferrocene in CdPS3. Physica B+C, 133 (1), 64–70. doi: 10.1016/0378-4363(85)90026-9
- Bringley, J. F., Averill, B. A. (1987). An aromatic hydrocarbon intercalate: FeOCl(perylene)1/9. Chemical communications, 6, 399–400. doi: 10.1039/c39870000399
- Hudson, M. J., Sylvester, P., Rodrigues-Castellon E. (1977). Intercalation of monomers into alpha-tin (IV) hydrogen phosphate and the effects of high pressure on intercalation. Solid State Ionics, 35 (1-2), 73–77. doi: 10.1016/0167-2738(89)90014-3
- Koshkin, V. M., Milner, A. P., Kukol’, V. V. (1976). Novye interkalirovannye kristally PbI2 i BiI3. Fizika tverdogo tela, 18 (2), 609–611.
- Koshkin, V. M., Yagubskiy, E. B., Milner, A. P. (1977). Novyj tip interkalirovannyh sloistyh soedinenij. Pis’ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 24 (3), 129–132.
- Kurdyukov, D. A., Eurov, D. A., Stovpiaga, E. Yu., Yakovlev, S. A., Kirilenko, D. A., Golubev, V. G. (2014). Photonic crystals and glasses from monodisperse spherical mesoporous silica particles filled with nickel. Physics of the Solid State, 56 (5), 1033–1038.
- Yoshimoto, S., Ohashi, F., Kameyama, T. (2005). X-ray diffraction studies of intercalation compounds prepared from aniline salts and montmorillonite by a mechanochemical processing. Solid State Communications, 136 (5), 251–256. doi: 10.1016/j.ssc.2005.08.017
- Athens, G. L., Shayib, R. M., Chmelka, B. F. (2009). Functionalization of mesostructured inorganic–organic and porous inorganic materials. Current Opinion in Colloid and Interface Science, 14 (4), 281–292. doi: 10.1016/j.cocis.2009.05.012
- Zorn, M., Meuer, S., Tahir, M. N., Khalavka, Yu., Soennichsen, C., Tremel, W., Zentel, R. (2008). Liquid crystalline phases from polymer functionalised semiconducting nanorods. Journal of Materials Chemistry, 18 (25), 3050–3058. doi: 10.1039/b802666a
- Lies, R. M. A. (1977). III – VI Compounds Preparation and cryst. growth material with layered structure. Physics and Chemistry of Materials with Layered Structures, 1, 225–254. doi: 10.1007/978-94-017-2750-1_5
- Friend, R. H., Yoffe, A. D. (1987). Electronic Properties of intercalation complexes of the transition metal dichalcogenides. Advances in Physics, 36 (1), 1–94. doi: 10.1080/00018738700101951
- Grigorchak, I. I. Netyaga, V. V., Kovalyuk, Z. D. (1997). On some physical properties of InSe and GaSe semiconducting crystals intercalated by ferroelectrics. Journal of Physics: Condensed Matter, 9 (12), L191–L195. doi: 10.1088/0953-8984/9/12/001
- Bisquert, J., Randriamahazaka, H., Garcia-Belmonte, G. (2005). Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry. Electrochimica Acta, 51 (4), 627–640. doi: 10.1016/j.electacta.2005.05.025
- Penin, N. A. (1996). Otritsatelnaia emkost v poluprovodnikovyh strukturah. Phisica i tekhnika polyprovodnikov, 30 (4), 626–634.
- Mora-Sero, I., Bisquert, J., Fabregat-Santiago, F., Garcia-Belmonte, G., Zoppi, G., Durose, K. et. al. (2006). Implications of the Negative Capacitance Observed at Forwars Bias in Nanocomposite and Polycrystalline Solar Cells. Nano Letters, 6 (4), 640–650. doi: 10.1021/nl052295q
- Pollak, M., Geballe, T. H. (1961). Low frequency conductivity due to hopping processes in silicon. Physical Review, 122 (6), 1743–1753. doi: 10.1103/physrev.122.1742
- Zubarev, D. N. (1971). Neravnovesnaya statisticheskaya termodinamika. Moscow: Nauka, 416.
- Aleshkin, V. Ja., Gavrilenko, L. V., Odnobljudov, M. A., Jassievich, I. N. (2008). Primesnye rezonansnye sostojanija v poluprovodnikah. Obzor. Fizika i tehnika poluprovodnikov, 42 (8), 899–922.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Федір Олегович Іващишин, Іван Іванович Григорчак, Тетяна Миколаївна Гордіюк, Роман Ярославович Швець, Юрій Орестович Кулик
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.