Effect of lattice expansion degree on properties and electromagnetic field response of InSe, GaSe and clathrates on their basis

Authors

  • Федір Олегович Іващишин Lviv Polytechic National University Bandery 12, Lviv, 79013, Ukraine
  • Іван Іванович Григорчак Lviv Polytechic National University Bandery 12, Lviv, 79013, Ukraine
  • Тетяна Миколаївна Гордіюк Lviv Polytechic National University Bandery 12, Lviv, 79013, Ukraine
  • Роман Ярославович Швець Lviv Polytechic National University Bandery 12, Lviv, 79013, Ukraine
  • Юрій Орестович Кулик Ivan Franko National University of Lviv Universytetska 1, Lviv, 79000, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.56576

Keywords:

intercalation, GaSe, InSe, impedance spectroscopy, magnetocapacitance effect, clathrates

Abstract

The effect of the expansion degree of the crystal lattice of layered semiconductors GaSe and InSe on their properties and behavior in a constant magnetic field and under light is investigated. It is revealed that changes in the crystallographic parameters, as well as in the parameters of the energy spectrum of the defects that determine their kinetic and polarization properties at room temperature are not monotonic functions of the expansion degree. It is found that changes in response to the magnetic field and the light wave field have the same nature. As an example, the changes in the structure and physical properties of InSe<CS(NH2)2> clathrates for the 2- and 4-fold expansion, synthesized under different conditions are examined. Thus, the synthesis of these clathrates in a magnetic field leads to the appearance of positive and negative magnetoresistance for the 2- and 4-fold lattice expansion respectively. Opposite effects may be caused by asymmetry inversion of the density of states above and below the Fermi level depending on the expansion degree of the single crystal lattice.

Author Biographies

Федір Олегович Іващишин, Lviv Polytechic National University Bandery 12, Lviv, 79013

PhD, researcher

Department of Applied Physics and Nanomaterials

Іван Іванович Григорчак, Lviv Polytechic National University Bandery 12, Lviv, 79013

Professor

Department of Applied Physics and Nanomaterials Science

Тетяна Миколаївна Гордіюк, Lviv Polytechic National University Bandery 12, Lviv, 79013

PhD, researcher

Department of Applied Physics and Nanomaterials Science

Роман Ярославович Швець, Lviv Polytechic National University Bandery 12, Lviv, 79013

PhD, researcher

Department of Applied Physics and Nanomaterials Science 

Юрій Орестович Кулик, Ivan Franko National University of Lviv Universytetska 1, Lviv, 79000

PhD, Assistant

Department of Metal Physics

References

  1. Choy, J.-H., Paek, S.-M., Oh, J.-M., Jang, E.-S. (2002). Intercalative route to heterostructured nanohybrids. Current Applied Physics, 2 (6), 489–495. doi: 10.1016/s1567-1739(02)00163-3
  2. Choy, J.-H., Kwak, S.-Y., Park, J.-S., Jeong, Y.-J., Portier, J. (1999). Intercalative Nanohybrids of Nucleoside Monophosphates and DNA in Layered Metal Hydroxide. Journal of the American Chemical Society, 121 (6), 1399–1400. doi: 10.1021/ja981823f
  3. Gusev, A. I. (1998). Effects of the nanocrystalline state in solids. Uspekhi phisicheskih nauk, 168 (1), 55–83. doi: 10.3367/ufnr.0168.199801c.0055
  4. Len, Zh.-M. (1998). Supramolekulyarnaya himiya. Koncepcii i perspektivy. Novosibirsk: Nauka, 333.
  5. Stid, D. V., Etvud, D. L. (2007). Supramolekulyarnaya himiya. Moscow: Akademkniga, 896.
  6. Tien, C., Charnaya, E. V., Baryshnikov, S. V., Lee, M. K., Sun, S. Y., Michel, D., Böhlmann, W. (2004). Evolution of NaNO2 in porous matrices. Physics of the Solid State, 46 (12), 2301–2305. doi: 10.1134/1.1841397
  7. Ushakov, V. V., Aronin, A. S., Karavanskiĭ, V. A., Gippius, A. A. (2009). Formation and optical properties of CdSSe semiconductor nanocrystals in the silicate glass matrix. Physics of the Solid State, 51 (10), 2161–2165.
  8. Danishevskiĭ, A. M., Kyutt, R. N., Sitnikova, A. A., Shanina, B. D., Kurdyukov, D. A., Gordeev, S. K. (2009). Palladium clusters in nanoporous carbon samples: Structural properties. Physics of the Solid State, 51 (3), 640–644.
  9. Baryshnikov, S. V., Charnaya, E. V., Milinskiĭ, A. Yu., Stukova, E. V., Tien, C., Michel, D. (2010). Dielectric properties of crystalline binary KNO3–AgNO3 mixtures embedded in nanoporous silicate matrices. Physics of the Solid State, 52 (2), 392–396.
  10. Stasyuk, I. V., Velychko, O. V. (2014). The study of electronic states in highly anisotropic layered structures with stage ordering. Journal of physical studies, 18 (2/3), 2002-1–2002-9.
  11. Koshkin, V. M., Kukol’, V. V., Milner, A. P. (1977). Krystallycheskaya structura i nekotorye fizicheskie svojstva interkalirovannyh kristallov PbJ2. Fizika tverdogo tela, 19 (6), 1608–1612.
  12. Beneš, L., Votinský, J., Lošťý, P., Kalousová, J., Klikorka, J. (1985). Cobaltocene Intercalate of the Layered SnSe2. Physica Status Solidi (a), 89 (1), 1–4. doi: 10.1002/pssa.2210890144 .
  13. Bal, B., Ganguli, S., Bhattacharya, M. (1985). Intercalation of ferrocene in CdPS3. Physica B+C, 133 (1), 64–70. doi: 10.1016/0378-4363(85)90026-9
  14. Bringley, J. F., Averill, B. A. (1987). An aromatic hydrocarbon intercalate: FeOCl(perylene)1/9. Chemical communications, 6, 399–400. doi: 10.1039/c39870000399
  15. Hudson, M. J., Sylvester, P., Rodrigues-Castellon E. (1977). Intercalation of monomers into alpha-tin (IV) hydrogen phosphate and the effects of high pressure on intercalation. Solid State Ionics, 35 (1-2), 73–77. doi: 10.1016/0167-2738(89)90014-3
  16. Koshkin, V. M., Milner, A. P., Kukol’, V. V. (1976). Novye interkalirovannye kristally PbI2 i BiI3. Fizika tverdogo tela, 18 (2), 609–611.
  17. Koshkin, V. M., Yagubskiy, E. B., Milner, A. P. (1977). Novyj tip interkalirovannyh sloistyh soedinenij. Pis’ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 24 (3), 129–132.
  18. Kurdyukov, D. A., Eurov, D. A., Stovpiaga, E. Yu., Yakovlev, S. A., Kirilenko, D. A., Golubev, V. G. (2014). Photonic crystals and glasses from monodisperse spherical mesoporous silica particles filled with nickel. Physics of the Solid State, 56 (5), 1033–1038.
  19. Yoshimoto, S., Ohashi, F., Kameyama, T. (2005). X-ray diffraction studies of intercalation compounds prepared from aniline salts and montmorillonite by a mechanochemical processing. Solid State Communications, 136 (5), 251–256. doi: 10.1016/j.ssc.2005.08.017
  20. Athens, G. L., Shayib, R. M., Chmelka, B. F. (2009). Functionalization of mesostructured inorganic–organic and porous inorganic materials. Current Opinion in Colloid and Interface Science, 14 (4), 281–292. doi: 10.1016/j.cocis.2009.05.012
  21. Zorn, M., Meuer, S., Tahir, M. N., Khalavka, Yu., Soennichsen, C., Tremel, W., Zentel, R. (2008). Liquid crystalline phases from polymer functionalised semiconducting nanorods. Journal of Materials Chemistry, 18 (25), 3050–3058. doi: 10.1039/b802666a
  22. Lies, R. M. A. (1977). III – VI Compounds Preparation and cryst. growth material with layered structure. Physics and Chemistry of Materials with Layered Structures, 1, 225–254. doi: 10.1007/978-94-017-2750-1_5
  23. Friend, R. H., Yoffe, A. D. (1987). Electronic Properties of intercalation complexes of the transition metal dichalcogenides. Advances in Physics, 36 (1), 1–94. doi: 10.1080/00018738700101951
  24. Grigorchak, I. I. Netyaga, V. V., Kovalyuk, Z. D. (1997). On some physical properties of InSe and GaSe semiconducting crystals intercalated by ferroelectrics. Journal of Physics: Condensed Matter, 9 (12), L191–L195. doi: 10.1088/0953-8984/9/12/001
  25. Bisquert, J., Randriamahazaka, H., Garcia-Belmonte, G. (2005). Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry. Electrochimica Acta, 51 (4), 627–640. doi: 10.1016/j.electacta.2005.05.025
  26. Penin, N. A. (1996). Otritsatelnaia emkost v poluprovodnikovyh strukturah. Phisica i tekhnika polyprovodnikov, 30 (4), 626–634.
  27. Mora-Sero, I., Bisquert, J., Fabregat-Santiago, F., Garcia-Belmonte, G., Zoppi, G., Durose, K. et. al. (2006). Implications of the Negative Capacitance Observed at Forwars Bias in Nanocomposite and Polycrystalline Solar Cells. Nano Letters, 6 (4), 640–650. doi: 10.1021/nl052295q
  28. Pollak, M., Geballe, T. H. (1961). Low frequency conductivity due to hopping processes in silicon. Physical Review, 122 (6), 1743–1753. doi: 10.1103/physrev.122.1742
  29. Zubarev, D. N. (1971). Neravnovesnaya statisticheskaya termodinamika. Moscow: Nauka, 416.
  30. Aleshkin, V. Ja., Gavrilenko, L. V., Odnobljudov, M. A., Jassievich, I. N. (2008). Primesnye rezonansnye sostojanija v poluprovodnikah. Obzor. Fizika i tehnika poluprovodnikov, 42 (8), 899–922.

Published

2015-12-23

How to Cite

Іващишин, Ф. О., Григорчак, І. І., Гордіюк, Т. М., Швець, Р. Я., & Кулик, Ю. О. (2015). Effect of lattice expansion degree on properties and electromagnetic field response of InSe, GaSe and clathrates on their basis. Eastern-European Journal of Enterprise Technologies, 6(11(78), 48–56. https://doi.org/10.15587/1729-4061.2015.56576

Issue

Section

Materials Science