Development of the information technology for processing anomalous measurements of strain-gauge systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.56815

Keywords:

linguistic variable, fuzzy time series, fuzzy situations, degree of comparison of fuzzy situations

Abstract

The aim of the research is the development of the information technology for processing anomalous measurements of strain-gauge systems to improve the accuracy of estimating the mass of an object with a limited time of weighing.

With this, the main problem is the need to describe anomalous situations that may occur on a variety of sensors under uncertainty. This task required the development of an appropriate mathematical approach based on the theory of fuzzy time series, as well as new approaches in determining the degree of comparison of fuzzy situations.

In practice, the search for anomalies is proposed to carry out with the help of the algorithms using the specially-designed standard bases, describing the fuzzy situations. It is assumed that the standard bases are formed of a large set of real situations.

Experimental results show that using this information technology in processing the signals from a plurality of strain gauges increases the estimation accuracy of the sensor readings by several times.

Author Biographies

Николай Борисович Копытчук, Odessa National Polytechnic University Shevchenko Avenue 1a, Odessa, Ukraine, 65044

Doctor of Technical Sciences, Professor, pensioner

Department of Computer intellectual systems and networks

Петр Метталинович Тишин, Odessa national polytechnic university Shevchenco 1, Odsea, Ukraine, 65044

Associate professor, PhD

The department of computer intellectual systems and network

Игорь Николаевич Копытчук, Odessa National Polytechnic University Shevchenko Avenue 1a, Odessa, Ukraine, 65044

Senior Lecturer

Department of Computer intellectual systems and networks

References

  1. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. doi: 10.1016/s0019-9958(65)90241-x
  2. Kruglov, V. V., Dli, M. I., Golunov, R. Ju. (2001). Nechetkaja logika i iskusstvennye nejronnye seti. Moscow: Fizmatlit, 224.
  3. Shtovba, S. D. (2007). Proektirovanie nechetkih sistem sredstvami MATLAB. Moscow: Gorjachaja linija – Telekom, 288.
  4. Borisov, V. V., Kruglov, V. V., Fedulov, A. S. (2007). Nechetkie modeli i seti. Moscow: Gorjachaja linija – Telekom, 284.
  5. Rotshtejn, A. P. (1999). Intellektual'nye tehnologii identifikacii: nechetkaja logika, geneticheskie algoritmy, nejronnye seti. Vinnica: UNIVERSUM-Vinnica, 320.
  6. Jarushkina, N. G. (2008). Nechetkie sistemy: obzor itogov i tendencij razvitija. Iskusstvennyj intellekt i prinjatie reshenij, 4, 26–38.
  7. Afanas'eva, T. V., Namestnikov, A. M., Perfil'eva, I. G., Romanov, A. A., Jarushkina, N. G. (2014). Prognozirovanie vremennyh rjadov: nechetkie modeli. Ul'janovsk: UlGTU, 145.
  8. Graves, D., Pedrycz, W. (2009). Multivariate Segmtntation of Time Series with Differential Evolution. International Fuzzy Systems Association World – European Society for Fuzzy Logic and Technology Conference (IFSA-EUSFLAT 2009). Lisbon, Portugal, 1108–1113.
  9. Giove, S. (1999). Fuzzy logic and Clustering methods for time series analisys. ESIT'99. Workshop on Finance, Trade and Services. Chania, 7. Available at: http://www.erudit.de/erudit/events/esit99/12600_p.pdf
  10. Herbst, G., Bocklish, S. F. (2009). Online Recognition of fuzzy time series patterns. International Fuzzy Systems Association World – European Society for Fuzzy Logic and Technology Conference (IFSA-EUSFLAT 2009). Lisbon, Portugal, 974–979.
  11. Kacprzyk, J., Wilbik, A. (2009). Using Fuzzy Linguistic summaries for the comparison of time series. International Fuzzy Systems Association World – European Society for Fuzzy Logic and Technology Conference (IFSA-EUSFLAT 2009). Lisbon, Portugal, 1321–1326.
  12. Chandola, V., Banerjee, A., Kumar, V. (2009). Anomaly Detection: A Survey. ACM Computing Surveys, 41 (3), 1–58. doi: 10.1145/1541880.1541882
  13. Cheboli, D. (2010). Anomaly Detection of Time Series. Minnesota, 75. Available at: http://conservancy.umn.edu/handle/11299/92985
  14. Afanas'eva, T. V. (2013). Modelirovanie nechetkih tendencij vremennyh rjadov. Ul'janovsk: UlGTU, 215.
  15. Kopytchuk, N. B., Tishin, P. M., Kopytchuk, I. N., Milejko, I. G. (2015). Algoritm opredelenija anomal'nyh situacij dlja tenzometricheskih sistem Visnyk Nacional'nogo tehnichnogo universytetu "KhPI". Serija: Mehaniko-tehnologichni systemy ta kompleksy, 21 (1130), 37–45.
  16. Kopytchuk, N. B., Tishin, P. M., Kopytchuk, I. N., Milejko, I. G. (2015). Construction of set of standards to improve the accuracy of expert assessments. ScienceRise, 4/2 (9), 72–76. doi: 10.15587/2313-8416.2015.41579
  17. Kopytchuk, N. B., Tishin, P. M., Kopytchuk, I. N., Milejko, I. G. (2014). Postroenie aproksimmirujushhej nechetkoj zavisimosti, dlja opredelenija parametrov klassifikacii anomalij. Innovacii v nauke. Novosibirsk, 8 (33), 14–22.

Published

2015-12-25

How to Cite

Копытчук, Н. Б., Тишин, П. М., & Копытчук, И. Н. (2015). Development of the information technology for processing anomalous measurements of strain-gauge systems. Eastern-European Journal of Enterprise Technologies, 6(9(78), 22–27. https://doi.org/10.15587/1729-4061.2015.56815

Issue

Section

Information and controlling system