The dependence of intergrain damageability of casting on the technological treatment route

Authors

  • Ярослав Маркіянович Кусий National University "Lviv Polytechnic", 12 Bandera street, Lviv, Ukraine, 79013, Ukraine https://orcid.org/0000-0001-5741-486X
  • Олег Анатолійович Кузін National University "Lviv Polytechnic" 12 S. Bandera str., Lviv, Ukraine, 79013, Ukraine https://orcid.org/0000-0003-3669-0237
  • Микола Олегович Кузін Lviv branch of V. Lazaryan Dnipropetrovsk National University of Railway Transport 12а Blazhkevych str., Lviv, Ukraine, 79052 Research Institute of Forensic Expertise of the Ministry of Justice of Ukraine 54 Lipinsky str., Lviv, Ukraine, 79029, Ukraine https://orcid.org/0000-0002-6032-4598

DOI:

https://doi.org/10.15587/1729-4061.2016.59845

Keywords:

workflow, reliability, cast billet, technological damage, stress concentrator

Abstract

The study determines the role of heredity varieties in machining and assembling the products. The paper presents an analysis of interdependence between technological heredity, the stages of a product life cycle, and structural features of the surface layer. It emphasizes the importance of taking into account procurement operations in analyzing the impact of technological heredity on the parameters of a product. We have analyzed modern concepts for assessing damageability of materials and products and suggested the method of LM-firmness to analyze and assess the transformation of inhomogeneous surface layers of the cast samples into technological damage during machining. We have experimentally studied the role of technological surface treatment in damage formation and processed the findings. We used the model of functionally-graded structure of grain boundaries to determine the role of the cutting modes in the formation of structural stress concentrators.

The devised method for determining the Weibull homogeneity coefficient (m) on the surface of the cast billets allows prognoses of the damage development in the surface layers after machining. The most rational technological treatment route for the casting of AD-type alloys comprises two successive finishing millings, and the Weibull homogeneity coefficient increases by 26-84% compared to the starting workpiece due to a lower damage of the material at the stage of finishing milling.

Author Biographies

Ярослав Маркіянович Кусий, National University "Lviv Polytechnic", 12 Bandera street, Lviv, Ukraine, 79013

Candidate of Technical Sciences, Associate Professor

Department of Mechanical Engineering Technology

Олег Анатолійович Кузін, National University "Lviv Polytechnic" 12 S. Bandera str., Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Applied Material Science and Materials Engineering

Микола Олегович Кузін, Lviv branch of V. Lazaryan Dnipropetrovsk National University of Railway Transport 12а Blazhkevych str., Lviv, Ukraine, 79052 Research Institute of Forensic Expertise of the Ministry of Justice of Ukraine 54 Lipinsky str., Lviv, Ukraine, 79029

PhD, Associate Professor

Leading researcher

References

  1. Kusyi, Ya. M., Kuk, A. M. (2015). Method devised to improve technological reliability of machine parts. Eastern-European Journal of Enterprise Technologies, 1/7 (73), 41–51. doi: 10.15587/1729-4061.2015.36336
  2. Aleksandrovskaia, L. N., Afanas'ev, A. P., Lisov, A. A. (2001). Sovremennye metody obespecheniia bezotkaznosti slozhnyh tehnicheskih sistem. Moscow: Logos, 208.
  3. Suslov, A. G. (2000). Kachestvo poverhnostnogo sloia detalei mashin. Moscow: Mashinostroenie, 320.
  4. Pronikov, A. S. (1978). Nadezhnost' mashin. Moscow: Mashinostroenie, 592.
  5. Suslov, A. G. (2008). Inzheneriia poverhnosti detalei. Moscow: Mashinostroenie, 320.
  6. Kuzin, O. A., Kusyi, Ya. M., Topilnytskyi, V. H. (2015). Influence of technological heredity on reliability parameters of products. Technology audit and production reserves, 1/1 (21), 15–21. doi: 10.15587/2312-8372.2015.37678
  7. Yashcheritsyn, P. I., Ryzhov, E. V., Averchenko, V. I. (1977). Tehnologicheskaia nasledstvennost' v mashinostroenii. Minsk: Nauka i tehnika, 256.
  8. Markarian, G. K. (1971). Tehnologicheskaia nasledstvennost' pri obrazovanii poverhnosti zakalennyh detalei mashin. Fizika rezaniia metallov, 1, 32–34.
  9. Aftanaziv, I. S. (1998). Tekhnolohichne zabezpechennia nadiinosti detalei mashyn. Lviv: DULP, 132.
  10. Bozhydarnik, V. V., Hryhorieva, N. S., Shabaikovych, V. A. (2006). Tekhnolohiia vyhotovlennia detalei vyrobiv. Lutsk: Nadstyria, 612.
  11. Kusyi, Ya. M. (2002). Tekhnolohichne zabezpechennia fizyko-mekhanichnykh parametriv poverkhnevykh shariv metalevykh dovhomirnykh tsylindrychnykh detalei vibratsiino-vidtsentrovym zmitsnenniam. Lviv, 260.
  12. Durham, S. D., Padgett, W. J. (1997). Cumulative Damage Models for System Failure with Application to Carbon Fibers and Composites. Technometrics, 39 (1), 34–44. doi: 10.2307/1270770
  13. McEvily, A. J. (2002) Metal failures: mechanisms, analysis, prevention. John Wiley & Sons, 324.
  14. Zohdi, T. I., Wriggers, P. (2005). An introduction to computational micromechanics. Springer, 198. doi: 10.1007/978-3-540-32360-0
  15. Kachanov, L. M. (1974). Osnovy mehaniki razrusheniia. Moscow: Nauka, 308.
  16. Rabotnov, Yu. N. (1979). Mehanika deformiruemogo tverdogo. Moscow: Nauka, 744.
  17. Kundu, T. (2008). Fundamentals of fracture mechanics. CRC Press, Taylor and Francis Group, Boca Raton, FL, USA, 304.
  18. Shulzhenko, M. H., Hontarovskyi, P. P., Matiukhin, Yu. I., Pozhydaiev, O. V. (2009) Metodolohiia rozrakhunkovoi otsinky indyvidualnoho resursu parovykh turbin TES i TETs. Tsilova kompleksna prohrama NAN Ukrainy «Problemy resursu i bezpeky ekspluatatsii konstruktsii». Zbirnyk naukovykh statei z rezultatamy, otrymanymy v 2007–2008 rokiv. Kyiv, 682–686.
  19. Lebedev, A. A., Muzyka, N. R. , Volchek, N. L. (2003). Metod diagnostiki sostoianiia materiala po parametram rasseianiia harakteristik tverdosti. Zavod. lab, 12, 49–51.
  20. Lebedev, A. A. (2003). A new method of assesment of material degradation during its operating time. Zaliznchnyi Transport Ukrainy, 5, 30–33.
  21. Kuzin, O., Kusyi, Ya., Topilnytskyi V. (2015). Vplyv umov otrymannia vylyvkiv na formuvannia tekhnolohichnykh poshkodzhen. Tezy dopovidei 12-oho Mizhnarodnoho sympoziumu ukrainskykh inzheneriv-mekhanikiv u Lvovi, 115–116.
  22. Kuzin, O. A., Kuzin, N. O. (2013). Struktura i mizhzerenna poshkodzhuvanist stalei. Lviv, Ukrainska akademiia drukarstva, naukovi zapysky, 99–115.
  23. Kulikov, D. V., Mekalova, N. V., Zakirnichnaia, M. M. (1999). Fizicheskaia priroda razrusheniia. Ufa: UGNTU, 239.

Published

2016-02-15

How to Cite

Кусий, Я. М., Кузін, О. А., & Кузін, М. О. (2016). The dependence of intergrain damageability of casting on the technological treatment route. Eastern-European Journal of Enterprise Technologies, 1(5(79), 39–47. https://doi.org/10.15587/1729-4061.2016.59845