Modeling for establishment of evaluation conditions of functional safety of the railway track

Authors

  • Ірина Олександрівна Бондаренко Dnipropetrovsk national university of railway transport 2 Lazaryan str., Dnepropetrovsk, Ukraine, 49005, Ukraine https://orcid.org/0000-0003-4717-3032

DOI:

https://doi.org/10.15587/1729-4061.2016.59874

Keywords:

modeling, lifecycle, railway track deformability, wave propagation, track reliability, functional safety of track

Abstract

The paper examines the modeling of the lifecycle of the railway track elements for investigating the deformation processes as the basis for the regulatory framework of the track operation to ensure the reliability of railways. To this end, the foundations of the wave propagation theory are used in describing the track and rolling stock interaction. The basic theoretical provisions and principles to describe the features of deformation operation and the calculation algorithm to determine the stress-strain state of the track are presented. Propagation of bulk and surface waves is used as exciting pulses. The requirements to the minimum length of the site under study and distance between the forces that must be considered in modeling are defined. The requirements to evaluation conditions of functional safety of the track are formed. According to the proposed model, a dynamic process, which involves the movement of the track under the effects of horizontal and vertical movements of wheels on rails for a period of time is considered.

Author Biography

Ірина Олександрівна Бондаренко, Dnipropetrovsk national university of railway transport 2 Lazaryan str., Dnepropetrovsk, Ukraine, 49005

PhD, Associate professor

Department track and track facilities

References

  1. Suvorova, T. V., Usoshin, S. A. (2011). K raschetu volnovogo polja, vozbuzhdaemogo vstrechnymi oscillirujushhimi nagruzkami v geterogennom poluprostranstve. V sbornike trudov Vserossijskoj nauchno-technicheskoi konferentcii «Transport-2011», 37.
  2. Verichev, S. N. (2008). Matematicheskie metody issle-dovanija ustojchivosti ob’ekta, dvizhushhegosja po uprugoj napravljajushhej Vestnik nizhegorodskogo universiteta im. N. I. Lobachevskogo, 4, 117–121.
  3. Kornilov, S. N., Abdukamilov, Sh. Sh. (2015). Rezul'taty jeksperimental'nogo izuchenija prochnostnyh harakteristik barhannyh peskov, slagajushhih zheleznodorozhnoe zemljanoe polotno. Vestnik MGTU im. G. I. Nosova, 1, 105–110.
  4. Ling, X.-Z., Chen, S.-J., Zhu, Z.-Y., Zhang, F., Wang, L.-N., Zou, Z.-Y. (2010). Field monitoring on the train-induced vibration response of track structure in the Beiluhe permafrost region along Qinghai–Tibet railway in China. Cold Regions Science and Technology, 60 (1), 75–83. doi: 10.1016/j.coldregions.2009.08.005
  5. Lakušić, S., Ahac, M. (2012). Rail traffic noise and vibration mitigation measures in urban areas S. Lakušić, Technical Gazette, 19 (2), 427–435.
  6. Schulte-Werning, B., Asmussen, B., Behr, W., Degen, K. G., Garburg, R. (2012). Advancements in Noise and Vibration Abatement to Support the Noise Reduction Strategy of Deutsche Bahn. Noise and Vibration Mitigation for Rail Transportation Systems, 118, 9–16. doi: 10.1007/978-4-431-53927-8_2
  7. Lee, B., Chau, W., Lam, J., Yeung, M. (2012). Planning and Controlling Railway Noise in a Metropolis: Our Practical Experience. Noise and Vibration Mitigation for Rail Transportation Systems, 118, 17–23. doi: 10.1007/978-4-431-53927-8_3
  8. Kasimov, B. R. (2014). Metodika prognozirovanija sostojanija putevoj bezopasnosti. transport Kazahstana, 1, 19–23.
  9. Auersch, L. (2008). The Influence of the Soil on Track Dynamics and Ground-Borne Vibration. Noise and Vibration Mitigation for Rail Transportation Systems, 99, 122–128. doi: 10.1007/978-3-540-74893-9_17
  10. Hussein, M. F. M., Hunt, H. E. M., Rikse, L., Gupta, S., Degrande, G., Talbot, J. P. et. al. (2008). Using the PiP Model for Fast Calculation of Vibration from a Railway Tunnel in a Multi-layered Half-Space. Noise and Vibration Mitigation for Rail Transportation Systems, 99, 136–142. doi: 10.1007/978-3-540-74893-9_19
  11. Lombaert, G., Degrande, G., François, S., Thompson, D. J. (2015). Ground-Borne Vibration due to Railway Traffic: A Review of Excitation Mechanisms, Prediction Methods and Mitigation Measures. Noise and Vibration Mitigation for Rail Transportation Systems, 126, 253–287. doi: 10.1007/978-3-662-44832-8_33
  12. Thompson, D. (2014). Railway noise and vibration: the use of appropriate models to solve practical problems. 21st International Congress on Sound and Vibration. Beijing, China, 1–16.
  13. Avillez, J., Frost, M., Cawser, S., Skinner, C., El-Hamalawi, A., Shields, P. (2012). Procedures for Estimating Environmental Impact From Railway Induced Vibration: A Review. ASME 2012 Noise Control and Acoustics Division Conference, 381–392. doi: 10.1115/ncad2012-1083
  14. Kossov, B. C., Bidulja, A. L., Krasnov, O. G., Akashev, M. G. (2013). Rezul'taty jekspluatacionnyh ispytanij geometricheski-silovogo metoda ocenki sostojanija puti. Vіsnyk Dnіpropetrovskogo natcionalnogo unsversitetu zalіznychnogo transporty іm. akad. V. Lazarjana, 5 (47), 97–104.
  15. Krasnov, O. G., Akashev, M. G., Efimenko, A. V., Nekrasova, T. Ju. (2015). Rezul'taty ocenki sostojanija puti diagnosticheskim poezdom geometricheski-silovym metodom. Put' i putevoe hozjajstvo, 9, 20–24.
  16. Bondarenko, I. O. (2015). Formuvannja ocinochnykh umov zhyttjevogho cyklu deformatyvnoji roboty zaliznychnoji koliji. Nauka ta proghres transportu. Vіsnyk Dnіpropetrovskogo natcionalnogo unsversitetu zalіznychnogo transporty іm. akad. V. Lazarjana, 3 (57), 107–117.
  17. Al'breht, V. G., Ljashhenko, V. N., Pershin, S. P., Shul'ga, V. Ja. (1963). Besstykovoj put' i dlinnye rel'sy. Moscow: Transport, 214.
  18. Verigo, M. F., Krepkogorskij, S. S. (1962). Ustanovlenie nom bokovyh dinamicheskih nagruzok podvizhnogo sostava po usloviju ustojchivosti puti poperechnom sdvigu. Moscow: Trudy CNIII MPS, 248, 210–302.

Published

2016-02-21

How to Cite

Бондаренко, І. О. (2016). Modeling for establishment of evaluation conditions of functional safety of the railway track. Eastern-European Journal of Enterprise Technologies, 1(7(79), 4–10. https://doi.org/10.15587/1729-4061.2016.59874

Issue

Section

Applied mechanics