Impact of sound irradiation on chlorella vulgaris cell metabolism

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.63730

Keywords:

cultivation, microalgae, sound irradiation, lipids, ultrasound

Abstract

The urgency of the problem is to determine the parameters of the external factor, the effect of which on Chlorella vulgaris cells increases the biosynthesis of triacylglycerols – feedstock for biodiesel production without reducing the biomass growth rate. The purpose of the paper is to determine the impact of sound irradiation on Chlorella vulgaris metabolism and biomass growth. Cultivation was carried out in the Gromov 6 medium at a temperature of 18 ± 20С. The effect of sound irradiation with frequencies of 5, 10, 15 and 20 kHz, power of 5 W/cm2 on the yield of lipids and biomass is investigated. It is shown that ultrasound irradiation with a frequency of 20 kHz increases the growth of biomass by 10% and lipids by 3 times compared to non–irradiated cells. This irradiation frequency is optimum among the studied frequencies to be used as a factor of influence for biodiesel production from Chlorella vulgaris microalgae. Irradiation with sound spectrum frequencies affects the cell metabolism towards increased biosynthesis of lipids. The specific content of the lipid fraction exceeds its content in non–irradiated cells by 1.5, 2.1 and 2 times for frequencies of 15, 10 and 5 kHz, respectively. At the same time, irradiation of microalgae cells with frequencies of 10 and 15 kHz reduces the biomass growth by 10±1 % compared to the control sample.

Author Biographies

Natalia Golub, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremogy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of environmental biotechnology and bioenergetics 

Igor Levtun, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremogy ave., Kyiv, Ukraine, 03056

Postgraduate student

Department of environmental biotechnology and bioenergetics 

References

  1. Becker, E. W. (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, 301.
  2. Jel'piner, I. E. (1963) Ultrazvuk. Fiziko–himicheskoe i biologicheskoe dejstvie. Moscow: Fizmatgiz, 490.
  3. Malishevskij, A. O., Sanina, T. V., Alehina, N. N., Skrynnikova, Ju. V., Cheremushkina, I. V., Varnakov, A. E. (2008). Patent № 2328119 (RU), C12N13, C12N1/18, A21D8/02. Sposob aktivacii drozhzhej. № 2000124844/13, 15.01.2007; published: 10.07.2008.
  4. Klomklieng, W., Prateepasen, A. (2012). Molasses fermentation to ethanol by Saccharomyces cerevisiae M30 using low ultrasonic frequency stimulation. KKU Research J.,17 (6), 950–957.
  5. Al-Taee, N. E., Abood, S. A., Al-Mallah, M. K. (2013) Ultrasonic Waves Stimulate the Activity of Thymine Nucleotide Biosynthetic Enzymes, Nucleic Acids and Proteins Content of Sesamum Indicum L. Stem Calli. Pure Sciences, 39 (1), 91–97.
  6. Aladjadjiyan, А. (2012) Physical Factors for Plant Growth Stimulation Improve Food Quality. Food Production – Approaches, Challenges and Tasks, 145–168. doi: 10.5772/32039
  7. Hassanien, R. H., Hou, T., LI, Y., LI, B. (2014). Advances in Effects of Sound Waves on Plants. Journal of Integrative Agriculture, 13 (2), 335–348. doi: 10.1016/s2095-3119(13)60492-x
  8. Chowdhury, E. K., Lim, H.-S., Bae, H. (2014) Update on the Effects of Sound Wave on Plants. The Korean Society of Plant Pathology, 20 (1), 1–5.
  9. Qi, L., Teng, G., Hou, T., Zhu, B., Liu, X. (2010). Influence of Sound Wave Stimulation on the Growth of Strawberry in Sunlight Greenhouse. Computer and Computing Technologies in Agriculture III, 317, 449–454. doi: 10.1007/978-3-642-12220-0_65
  10. Xiaocheng, Y., Bochu, W., Chuanren, D. (2003). Effects of sound stimulation on energy metabolism of Actinidia chinensis callus. Colloids and Surfaces B: Biointerfaces, 30 (1-2), 67–72. doi: 10.1016/s0927-7765(03)00027-4
  11. Joyce, E. M., Wu, X., Mason, T. J. (2010). Effect of ultrasonic frequency and power on algae suspensions. Journal of Environmental Science and Health, Part A, 45 (7), 863–866. doi: 10.1080/10934521003709065
  12. Lee, T. J., Nakano, K., Matsumara, M. (2001). Ultrasonic Irradiation for Blue-Green Algae Bloom Control. Environmental Technology, 22 (4), 383–390. doi: 10.1080/09593332208618270
  13. Krehbiel, J. D., Schideman, L. C., King, D. A., Freund, J. B. (2014). Algal cell disruption using microbubbles to localize ultrasonic energy. Bioresource Technology, 173, 448–451. doi: 10.1016/j.biortech.2014.09.072
  14. Ahn, C.-Y., Park, M.-H., Joung, S.-H., Kim, H.-S., Jang, K.-Y., Oh, H.-M. (2003). Growth Inhibition of Cyanobacteria by Ultrasonic Radiation: Laboratory and Enclosure Studies. Environmental Science & Technology, 37 (13), 3031–3037. doi: 10.1021/es034048z
  15. Yuan, Z. (2001) Biologic Effect of Ultrasonic Radioaitom on Marine Chlorella Journal of Xiamen University. Natur. Sci., 40 (3), 653–657.
  16. Choi, B., Lim, J.-H., Lee, J., Lee, T. (2013). Optimum conditions for cultivation of Chlorella sp. FC-21 using light emitting diodes. Korean Journal of Chemical Engineering, 30 (8), 1614–1619. doi: 10.1007/s11814-013-0081-0
  17. Upitis, V. V. (1983). Makro– i mikrojelementy v optimizacii mineral'nogo pitanija mikrovodoroslej. Riga: Znanie, 239.
  18. Men'shikov, V. V. (1987). Laboratornye metody issledovanija v klinike. Moscow: Medicina, 368.
  19. Rejnhol'd, V. (1987) Dvizhenie u rastenij. Moscow: Znanie, 176.
  20. GOST 13496.15–97 "Korma, Kombіkorma, Kombіkormova sirovina. Metodi viznachennja vmіstu vіl'nih zhirіv" (1997). Derzhavnyi standart Ukrainy.
  21. Golub, N. B., Levtun, I. I. (2015). Pіdvishhennja vmіstu lіpіdіv u klіtinah Chlorella vulgaris. Vіdnovljuvana energetika, 1 (40), 86–91.

Downloads

Published

2016-04-11

How to Cite

Golub, N., & Levtun, I. (2016). Impact of sound irradiation on chlorella vulgaris cell metabolism. Eastern-European Journal of Enterprise Technologies, 2(10(80), 27–31. https://doi.org/10.15587/1729-4061.2016.63730