Development of a mathematical apparatus for determining operator images of the desired quantized transition functions of finite duration

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.65477

Keywords:

quantized transition function, the Heaviside function, transition function of finite duration

Abstract

An important part of modern methods of synthesizing automatic control systems is selection of a characteristic polynomial that can provide the desired dynamics. However, standard polynomials allow only rough setting of the desired dynamic properties of a system.

A more convenient and clear alternative of imparting desired properties to the system in static and dynamic modes is to use not the standard characteristic polynomials but the desired transfer function that is not selected from a list of standard forms but is set solely on the basis of technological requirements and technical implementation capacity of a particular type of equipment.

The study suggests presenting the desired transition function of the automatic control system in a quantized form, i.e. as a set of operated coordinate values that change during a certain period that is relatively small in comparison with the duration of the transition process itself.

A possibility of using quantized transition functions is represented as the sum of time-shifted Heaviside functions for the synthesis of regulators in open-loop control systems. A method has been developed to determine analytically the operator images of the desired quantized transition functions of finite duration by relying only on the values of the signal levels in the quantization time and the value of the quantization period.

Author Biographies

Oleksiy Sheremet, Dniprodzerzhynsk State Technical University 2 Dniprobudivska str., Dniprodzerzhynsk, Ukraine, 51918

PhD, Associate Professor

Department of Electrical Engineering and Machinery

Oleksandr Sadovoy, Dniprodzerzhynsk State Technical University 2 Dniprobudivska str., Dniprodzerzhynsk, Ukraine, 51918

Doctor of Technical Sciences, Professor, Vice-Rector for Research

References

  1. Bianchi, G., Sorrentino, R. (2007). Electronic filter simulation and design. McGraw-Hill Professional, 606.
  2. Kuzovkov, N. T. (1976). Modalnoe upravlenie i nablyudayuschie ustroystva. Moscow: Mashinostroenie, 184.
  3. Burchnall, J. L. (1951). The Bessel polynomials. Canadian Journal of Mathematics, 3, 62–68. doi: 10.4153/cjm-1951-009-3
  4. Graham, D., Lathrop, R. C. (1953). The synthesis of optimum transient response: criteria and standard forms. AIEE Transactions, 72 (II), 1365–1391.
  5. Tolochko, O. I. (2004). Analiz ta sintez elektromehanichnih sistem zi sposterigachami stanu: navchalniy posibnik dlya studentiv vischih navchalnih zakladiv. Donetsk: Nord-Pres, 298.
  6. Horla, D. (2011). Pole-placement controller with full adaptation for plant with unknown structure in application to servo control. 2011 International Conference on Communications, Computing and Control Applications (CCCA), 1–4. doi: 10.1109/ccca.2011.6031468
  7. Wu, F., Wang, L., Rong, W., Sun, L. (2012). Dynamic dimensional synthesis of a precision 6-DOF parallel manipulator. 2012 IEEE International Conference on Mechatronics and Automation, 831–836. doi: 10.1109/icma.2012.6283250
  8. Maruschak, Ya. Yu., Kushnir, A. P. (2000). Sintez astatichnoyi pozitsiynoyi SPR metodom uzagalnenogo harakteristichnogo polynoma. Resp. mizhvidomchiy nauk.-tehn. zb. Elektromashinobuduvannya ta elektroobladnannya, 55, 3–10.
  9. Maruschak, Ya. Yu. (2000). Metod uzagalnenogo harakteristichnogo polinoma dlya sintezu sistem avtomatichnogo regulyuvannya. Pratsi Mizhnar. konf. z avtomatichnogo keruvannya. Avtomatika 2000, 4, 32–37.
  10. Sadovoy, O. V., Sheremet, O. I. (2009). Sintez sistem avtomatichnogo keruvannya zi zminnim harakteristichnim polinomom.Visnik Kremenchutskogo derzhavnogo politehnichnogo universitetu imeni Mihayla Ostrogradskogo, 4/2009 (57), Part 1, 32–35.
  11. Madani-Esfahani, S. M., Zak, S. H. (1987). Variable structure control of dynamical systems with bounded controllers. American Control Conference, 90–95.
  12. Ikbal, M. M., Abdelfatah M. (2001). Variable structure control of a magnetic levitation system. American Control Conference, 3725–3730.
  13. Bartolini, G., Ferrara, A., Usani, E. (1998). Chattering avoidance by second-order sliding mode control. IEEE Transactions on Automatic Control, 43 (2), 241–246. doi: 10.1109/9.661074
  14. Sadovoy, O. V., Sheremet, O. I. (2010). Analitichniy sintez regulyatoriv za kvantovanoyu formoyu bazhanoyi perehydnoyi funktsiyi. Zbirnik naukovih prats Dniprodzerzhinskogo derzhavnogo tehnichnogo universitetu: (tehnichni nauki), 1(14), 258–264.
  15. Stroustrup, B. (2013). The C++ programming language. Fourth edition. Addison-Wesley, 1347.
  16. Computer Engineering Curricula 2016 (2016). Available at: https://www.computer.org/cms/Computer.org/professional-education/curricula/ComputerEngineeringCurricula2016.pdf
  17. Isermann, R., Münchhof, M. (2011). Identification of dynamic systems. Springer-Verlag Berlin Heidelberg, 705. doi: 10.1007/978-3-540-78879-9
  18. Sheremet, O. I. (2009). Vikoristannya rozkladannya Hevisayda dlya sintezu regulyatoriv sistem avtomatichnogo keruvannya. Visnik Donbaskoyi derzhavnoyi mashinobudyvnoyi akademiyi: Zbirnik naukovih prats, 1 (4E), 189–193.
  19. Sheremet, O. I., Sadovoy, O. V., Sohina, Yu. V. (2014). Ponyattya diskretnogo chasovogo ekvalayzera. Zbirnik naukovih prats Donbaskogo derzhavnogo tehnichnogo universitetu, 1, 147–151.

Downloads

Published

2016-04-22

How to Cite

Sheremet, O., & Sadovoy, O. (2016). Development of a mathematical apparatus for determining operator images of the desired quantized transition functions of finite duration. Eastern-European Journal of Enterprise Technologies, 2(2(80), 51–58. https://doi.org/10.15587/1729-4061.2016.65477