Graph theory methods in analysing commuting networks of municipal electric transport

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.66192

Keywords:

complex network, urban/municipal public transport, route network, passenger traffic

Abstract

The article presents an analysis of the development of route networks of municipal passenger electric transport in five large cities of Ukraine – Donetsk, Zaporizhia, Odesa, Lviv, and Kryvyi Rih. A comparative analysis of the topological characteristics of the networks and their impact on passenger traffic is based on the graph theory and the theory of complex networks. The surveyed route networks presented in the spaces of stops, connections and routes were processed with calculations of the average degrees of vertices, the value of the average shortest path, as well as the clustering and assortativity coefficients. Passenger traffic was determined on the basis of statistical data on the annual number of shuttle trips per one city resident.

The research findings show that the electric transport networks in major cities of Ukraine occupy an intermediate position between regular and random graphs and contain features of the “tight world.” The method of correlation and regression analysis has revealed that passenger traffic on average increases linearly in route networks with higher values of the average shortest path and the assortativity coefficient in the space of connections, and linearly decreases in route networks with higher values of the average vertex degree and clustering coefficient in the space of routes. The study presents a substantive interpretation of the results that can be used to substantiate route networks’ development and assess the variation in passenger traffic.

Author Biography

Olexiy Kuz’kin, Zaporizhzhia National Technical University 64 Zhukovskogo str., Zaporizhzhia, Ukraine, 69063

PhD, Associate professor

Department of transport technologies

References

  1. Baxandall, P., Dutzik, T., Hoen, J. (2008). A better way to go: Meeting America's 21st century transportation challenges with modern public transit, 76.
  2. Statystychnyy shchorichnyk Ukrayiny za 2015 rik (2015). Kyiv: Derzhavna sluzhba statystyky Ukrayiny, 552.
  3. Shevchenko, I. Yu. (2015). Rehional'na dyferentsiatsiya avtomobilizatsiyi naselennya Ukrayiny. Ekonomika: realiyi chasu, 3 (19), 41–46.
  4. Yudyn, V. A., Samoylov, D. S. (1975). Horodskoy transport. Moscow: Stroyyzdat, 287.
  5. Efremov, I. S., Kobozev, V. M, Yudin V. A. (1980). Teoryia horodskykh passazhyrskykh perevozok. Moscow: Vysshaya shkola, 535.
  6. Stoilova, S., Stoev, V. (2015). An application of the graph theory which examines the metro networks, 10 (2), 35–48.
  7. Barthélemy, M. (2011). Spatial networks. Physics Reports, 499(1-3), 1–101. doi: 10.1016/j.physrep.2010.11.002
  8. Holovatch, Y., Olemskoi, O., von Ferber, C., Holovatch, T., Mryglod, O., Olemskoi, I., Palchykov, V. (2006). Skladni merezhi. Zhurnal fizychnykh doslidzhen', 10, 247–289.
  9. Derrible, S., Kennedy, C. (2010). Evaluating, Comparing, and Improving Metro Networks. Transportation Research Record: Journal of the Transportation Research Board, 2146, 43–51. doi: 10.3141/2146-06
  10. Lu, H., Shi, Y. (2007). Complexity of public transport networks. Tsinghua Science and Technology, 12 (2), 204–213. doi: 10.1016/s1007-0214(07)70027-5
  11. Chatterjee, A., Manovar, M., Ramadurai, G. Statistical Analysis of Bus Networks in India. Available at: http://arxiv.org/abs/1509.04554
  12. Kuz'kin, O. F. (2014). Rozvytok marshrutnykh merezh hromads'koho transportu velykykh mist Ukrayiny. Naukovi notatky, 46, 332–340.
  13. Derrible, S., Kennedy, C. (2009). Network Analysis of World Subway Systems Using Updated Graph Theory. Transportation Research Record: Journal of the Transportation Research Board, 2112, 17–25. doi: 10.3141/2112-03
  14. Parthasarathi, P. (2014). Network structure and metropolitan mobility. Journal of Transport and Land Use, 7 (2), 153–170. doi: 10.5198/jtlu.v7i2.494
  15. Osnovni pokaznyky roboty pidpryyemstv mis'koho elektrotransportu Ukrayiny za 2013 rik [XLS document]. Available at: http://www.korpmet.org.ua/?page_id=48
  16. Harary, F. (2003). Graph theory. Edytoryal URSS, 296.
  17. Von Ferber, C., Holovatch, T., Holovatch, Y., Palchykov, V. (2009). Public transport networks: empirical analysis and modeling. The European Physical Journal B, 68 (2), 261–275. doi: 10.1140/epjb/e2009-00090-x
  18. Dorogovtsev, S. M., Mendes, J. F. F. (2004). A shortest path to complex network, 25. Available at: http://arxiv.org/abs/cond-mat/0404593
  19. Kobzar', A. Y. (2006). Prykladnaya matematycheskaya statystyka. Dlya ynzhenerov y nauchnykh rabotnykov. FYZMATLYT, 816.
  20. Lashchenykh, O. A., Kuz’kin, O. F. Hrytsay, S. V. (2012). Imovirnisni i statystyko-eksperymental'ni metody analizu transportnykh protsesiv i system. Zaporizhzhya: ZNTU, 419.

Downloads

Published

2016-04-30

How to Cite

Kuz’kin, O. (2016). Graph theory methods in analysing commuting networks of municipal electric transport. Eastern-European Journal of Enterprise Technologies, 2(4(80), 19–25. https://doi.org/10.15587/1729-4061.2016.66192

Issue

Section

Mathematics and Cybernetics - applied aspects