Analysis of accuracy in evaluating gravimetric coefficients in the algorithm of spatial monitoring under conditions of excess

Authors

  • Yuri Kulyavets Kharkiv National University of Construction and Architecture 40 Sumskay str., Kharkiv,Ukraine, 61002, Ukraine
  • Oleg Bogatov Kharkiv National Automobile and Highway University 25 Petrovskogo str., Kharkiv, Ukraine, 61002, Ukraine
  • Elena Ermakova Kharkiv National Automobile and Highway University 25 Petrovskogo str., Kharkiv, Ukraine, 61002, Ukraine
  • Peter Karlash Kharkiv National University of Construction and Architecture 40 Sumskay str., Kharkiv,Ukraine, 61002, Ukraine
  • Vladimir Popov Kharkiv National Automobile and Highway University 25 Petrovskogo str., Kharkiv, Ukraine, 61002, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.66195

Keywords:

data integration, measuring of parameters, independent meters (measuring devices), filtering of estimates, weight coefficient matrix

Abstract

Information excess allows obtaining the resulting estimate by a variety of relatively simple measuring devices and using a minimally sufficient set of primary measurements. At the same time, the estimated parameters are typically associated with the initially measured estimates on the basis of nonlinear functional equations. Therefore, a direct use of the maximum likelihood method makes it necessary to solve a system of nonlinear equations. The use of the linearization method for nonlinear functional correlations allows obtaining explicitly optimal estimates (in this case, the most plausible ones) of the resulting parameter and the correlation matrix of assessment errors. The problem of an optimal use of assessments provided by the same state vector through different simultaneously applied methods can be solved by a consistent application of the estimates’ filtering algorithm. However, the weight coefficient matrix in the expression for determining the resulting estimate depends on the measured parameter values, and it is not always known a priori. One of the possible methods of obtaining the estimates of the weight coefficients matrix is to calculate direct estimates of error correlation matrices on the basis of independent discrete samples of estimates for the parameter state vector. Analytical expressions were obtained for mathematical expectation and variance of the assessment components of the error correlation matrix for determining the parameter state vector. The study has shown that the assessment accuracy depends both on the accuracy of the measuring devices and the length of the samples’ line taken to determine the error correlation matrix for the parameter evaluation.

Author Biographies

Yuri Kulyavets, Kharkiv National University of Construction and Architecture 40 Sumskay str., Kharkiv,Ukraine, 61002

PhD, Associate professor

Department of Life Safety & Environmental Engineering

 

Oleg Bogatov, Kharkiv National Automobile and Highway University 25 Petrovskogo str., Kharkiv, Ukraine, 61002

PhD, Associate professor

Department of Metrology and Life Safety

Elena Ermakova, Kharkiv National Automobile and Highway University 25 Petrovskogo str., Kharkiv, Ukraine, 61002

PhD, Associate professor

Department of Engineering and Computer Graphics

Peter Karlash, Kharkiv National University of Construction and Architecture 40 Sumskay str., Kharkiv,Ukraine, 61002

Senior teacher

Department of Life Safety & Environmental Engineering

Vladimir Popov, Kharkiv National Automobile and Highway University 25 Petrovskogo str., Kharkiv, Ukraine, 61002

PhD, Associate professor

Department of Metrology and Life Safety

References

  1. Abramov, Ju. O., Grinchenko, Je. M., Kirochkin, O. Ju. et. al. (2005). Monitoryng nadzvychajnyh sytuacij. Kharkiv: ACZU, 530.
  2. Bessonnyj, V. L. (2008). Ispol'zovanie metoda informacionnoj izbytochnosti dlja obespechenija dostovernosti rezul'tatov monitoringa chrezvychajnyh situacij. Problemi nadzvichajnih situacіj, 8, 44–51.
  3. Kondratov, V. T.(2006). Teorija izbytochnyh izmerenij. Komp’juternі zasobi, merezhі ta sistemi, 5, 23–33.
  4. Hrapov, F. I. (2010). K voprosu ispol'zovanija razlichnyh vidov izbytochnosti dlja ocenki sostojanija izmeritel'nyh sistem s trudnodostupnymi pervichnymi izmeritel'nymi preobrazovateljami v processe jekspluatacii. Vestnik metrologa, 3, 11–15.
  5. Shirman, Ja. D., Manzhos, V. N. (1981). Teorija i tehnika obrabotki radiolokacionnoj informacii na fone pomeh. Moscow: Radio i svjaz', 416.
  6. Motylev, K. I. (2011). Obrabotka izbytochnoj traektornoj informacii s uchetom korreljacii oshibok izmerenij. Avtomatika, telemehanіka, zv'jazok, 27, 45–49.
  7. Bystrov, V. A., Davydov, R. N., Lebedev, E. P., Mal'cev, A. G. (1988). Vlijanie izbytochnyh izmerenij na ocenku parametrov. Moscow: RTI im. akademika A. L. Minca AN SSSR, 20.
  8. Motylev, K. I., Mihajlov, M. V., Paslen, V. V. (2008). Obrabotka izbytochnoj traektornoj informacii v izmeritel'no-vychislitel'nyh sistemah. Avtomatika. Avtomatizacija. Jelektrotehnicheskie kompleksy i sistemy: nauchno-tehnicheskij zhurnal, 2 (22), 112–116.
  9. Bondarenko, L. N., Nefed'ev, D. I. (2014). Analiz testovyh metodov povyshenija tochnosti izmerenij. Izmerenie. Monitoring. Upravlenie. Kontrol', 1 (7), 15–20.
  10. Tkachenko, V. N., Korotkov, V. V., Pozdnjakov, E. K. (2013). Primenenie izbytochnosti vhodnyh dannyh v zadache opredelenija koordinat celi passivnymi mnogopozicionnymi kompleksami. Nauka і tehnіka Povіtrjanih Sil Zbrojnih Sil Ukraini, 4 (13), 64–67.
  11. Sejdzh, Je., Mils, Dzh.; Levin, B. R. (Ed.) (1978). Teorija ocenivanija i ee primenenie v svjazi i upravlenii. Moscow: Svjaz', 496.
  12. Karavaev, V. V., Sazonov, V. V. (1987). Statisticheskaja teorija passivnoj lokacii. Moscow: Radio i svjaz', 240.
  13. Hohlov, M. V. (2008). Algoritm opredelenija lokal'noj topologicheskoj izbytochnosti teleizmerenij na gipergrafe izmerenij. Jenergosistema: upravlenie, konkurencija, obrazovanie. V 2 t., 1, 423–427.
  14. Nagin, I. A., Shatilov, A. Ju. (2012). Algoritm kompleksirovanija NAP SRNS i avtomobil'nyh datchikov skorostej vrashhenija koles. Radiotehnika, 6, 126–130.
  15. Shatilov, A. Ju. (2008). Algoritm kompleksirovanija priemnika SRNS i INS po razomknutoj sheme. Radiotehnika, 7, 19–25.
  16. Surkov, V. O. (2013). Analiz sostava navigacionnyh sistem dlja podvizhnyh nazemnyh ob’ektov i principov ih postroenija. Tehnicheskie nauki: tradicii i innovacii, 34–37.
  17. Gross, J. N., Gu, Y., Rhudy, M. B., Gururajan, S., Napolitano, M. R. (2012). Flight-Test Evaluation of Sensor Fusion Algorithms for Attitude Estimation. IEEE Transactions on Aerospace and Electronic Systems, 48 (3), 2128–2139. doi: 10.1109/taes.2012.6237583
  18. Zhou, Z., Li, B., Shen, Y. (2013). A Window-Recursive Approach for GNSS Kinematic Navigation Using Pseudo range and Doppler Measurements. Journal of Navigation, 66 (2), 295–313. doi: 10.1017/s0373463312000549
  19. Bobylev, A., Kruchinin, P., Chertopolohov, V. (2014). O sovmestnoj obrabotke pokazanij inercial'nogo bloka i sistemy videoanaliza. Fizika i radiojelektronika v medicine i jekologii. FRJeMJe‘2014 s jelementami nauchnoj molodezhnoj shkoly, 1, 344–346.
  20. Tautges, J., Zinke, A., Krüger, B., Baumann, J., Weber, A., Helten, T. et. al. (2011). Motion reconstruction using sparse accelerometer data. ACM Transactions on Graphics, 30 (3), 1–12. doi: 10.1145/1966394.1966397
  21. Benzerrouk, H., Salhi, H., Nebylov, A. (2013). Adaptive “Cubature and Sigma Points” Kalman Filtering Applied to MEMS IMU/GNSS Data Fusion during Measurement Outlier. Journal of Sensor Technology, 3 (4), 115–125. doi: 10.4236/jst.2013.34018
  22. Nikitin, O. R., Kisljakov, A. N., Shuljat'ev, A. A. (2011). Kompleksirovanie dannyh mnogokanal'nogo monitoringa zemnoj poverhnosti. Metody i ustrojstva peredachi i obrabotki informacii, 13, 68–71.
  23. Alguliev, R. M., Orudzhov, G. G., Sabziev, Je. N. (2012). Kompleksirovanie izmerenij dlja identifikacii traektorii poleta letatel'nogo aparata. Mehatronika, avtomatizacija, upravlenie, 2 (131), 57–60.
  24. Kuljavec', Ju. V., Bogatov, O. I., Jermako, O. A. (2013). Combining excessive data for spatial environmental monitoring. Eastern-European Journal of Enterprise Technologies, 6/9 (66), 36–39. Available at: http://journals.uran.ua/eejet/article/view/18933/17043
  25. Tihonov, V. I. (1982). Statisticheskaja radiotehnika. Moscow: Radio i svjaz', 624.
  26. Mirskij, G. Ja. (1972). Apparaturnoe opredelenie harakteristik sluchajnyh processov. Moscow: Jenergija, 456.
  27. Agadzhanov, P. A., Dulevich, V. E., Korostelev, A. A. (Eds.) (1969). Kosmicheskie traektornye izmerenija. Radiotehnicheskie metody izmerenij i matematicheskaja obrabotka dannyh. Moscow: Sov. radio, 504.
  28. Kuljavec', Ju. V., Bogatov, O. I., Jermakova, O. A. (2015). Influence of errors on the accuracy of the spatial monitoring results under redundant information. Eastern-European Journal of Enterprise Technologies, 3/9 (75), 8–13. doi: 10.15587/1729-4061.2015.44235
  29. Kendal, M. Dzh., St'juart, A.; Kolmogorov, A. N. (Ed.) (1973). Statisticheskie vyvody i svjazi. Moscow: IL, 900.
  30. Anderson, T.; Gnedenko, B. V. (Ed.) (1963). Vvedenie v mnogomernyj statisticheskij analiz. Moscow: Fizmatgiz, 500.
  31. Krasnogorov, S. I. (1998). Matrichnyj analiz v zadachah otyskanija jekstremumov. Noginsk: Nauchno-issledovatel'skij centr 30 CNII MO, 100.

Downloads

Published

2016-04-30

How to Cite

Kulyavets, Y., Bogatov, O., Ermakova, E., Karlash, P., & Popov, V. (2016). Analysis of accuracy in evaluating gravimetric coefficients in the algorithm of spatial monitoring under conditions of excess. Eastern-European Journal of Enterprise Technologies, 2(4(80), 4–10. https://doi.org/10.15587/1729-4061.2016.66195

Issue

Section

Mathematics and Cybernetics - applied aspects