Modelling of crystallization process of polymeric composition in space and time

Authors

  • Vitaly Borovik Volgograd State University of Architecture and Civil Engineering Academic, 1, Volgograd, Russia, 400074, Russian Federation
  • Vitaly Borovik Volgograd State University of Architecture and Civil Engineering 1 Academic str., Volgograd, Russia, 400074, Russian Federation https://orcid.org/0000-0002-2409-4078

DOI:

https://doi.org/10.15587/1729-4061.2016.69383

Keywords:

formation of crystals, multidimensional space, the quasi Lorentz transformation, Minkowski universe

Abstract

In order to increase the efficiency of the analysis of the process of crystallization, by the example of a polymer composition the attempt of a multidimensional visualization was made, which allows creation of program systems to visually solve a wide range of tasks of the formation of crystals. The authors, based on the main provisions of the special theory of relativity, attached the physical sense to the concept of time, using the basic provisions of the concept of time and space that allows establishing a link between the various points of space. With the help of the quasi Lorentz transformation in the Minkowski universe, the modelling of the process of formation of crystals of polymer compositions was carried out in a four-dimensional space, combining physical three-dimensional space of factors affecting their formation, and time. The modeling of the process of crystallization in a 4D space has an important role not only as a great informative and probative force, but also as a means of promoting a better understanding of the processes of crystallization, in evaluating and searching for the optimal management of this process. The research results are likely to have a wide range of applications in the analysis of scientific, technical, technological and other processes, evolving in space and time.

Author Biographies

Vitaly Borovik, Volgograd State University of Architecture and Civil Engineering Academic, 1, Volgograd, Russia, 400074

Doctor of Technical Sciences, Professor, Head of Department

Department of Economics and road management

Vitaly Borovik, Volgograd State University of Architecture and Civil Engineering 1 Academic str., Volgograd, Russia, 400074

PhD, Associate Professor

Major construction of transport facilities

References

  1. Himija i himicheskaja tehnologija. Kristallizacija, skorost', teorija processa. Available at: http://chem21.info/info/18808 (Last accessed: 14.08.2015).
  2. Posharnikov, F. V., Filichkina, M. V. (2011). Issledovanie zakonomernostej gidratacii cementa v drevesno-kompozicionnyh materialah. Sovremennye problemy nauki i obrazovanija, 2.
  3. Borovik, V. S., Borovik, V. V., Prokopenko, Ju. E. (2014). Visualization of implementation of advanced technologies in space 4D. Eastern-European Journal of Enterprise Technologies, 3/3 (69), 4–11. doi: 10.15587/1729-4061.2014.24621
  4. Maslovsky, Yu. N., Slipushenko, S. V., Tur, A. V., Yanovsky, V. V. (2015). 3D composite particles. Functional materials, 22 (1). 69–78. doi: 10.15407/fm22.01.069
  5. Vasev, P. A., Perevalov, D. S. (2002). O sozdanii metodov mnogomernoj vizualizacii. Trudy 12-j Mezhdunarodnoj Konferencii po Komp'juternoj grafike i mashinnomu zreniju GrafiKon. Novgorod, 431–437.
  6. Whitrow, G. J. (1981). The Natural Philosophy. Oxford University Press, 410.
  7. Schorsch, S., Vetter, T., Mazzotti, M. (2012). Measuring multidimensional particle size distributions during crystallization. Chemical Engineering Science, 77, 130–142. doi: 10.1016/j.ces.2011.11.029
  8. Vetter, T., Burcham, C. L., Doherty, M. F. (2014). Attainable Regions in Crystallization Processes. Computer Aided Chemical Engineering, 34, 465–470. doi: 10.1016/b978-0-444-63433-7.50062-6
  9. Samad, N. A. F. A., Singh, R., Sin, G., Gernaey, K. V., Gani, R. (2010). Control of Process Operations and Monitoring of Product Qualities through Generic Model-based in Batch Cooling Crystallization. 20th European Symposium on Computer Aided Process Engineering, 28, 613–618. doi: 10.1016/s1570-7946(10)28103-8
  10. Xuan, W., Zhang, J., Xia, D. (2016). Crystallization characteristics of a coal slag and influence of crystals on the sharp increase of viscosity. Fuel, 176, 102–109. doi: 10.1016/j.fuel.2016.02.062
  11. Jiang, Y.-H., Liu, F., Huang, K., Liang, S.-H. (2015). Applying Vogel–Fulcher–Tammann relationship in crystallization kinetics of amorphous alloys. Thermochimica Acta, 607, 9–18. doi: 10.1016/j.tca.2015.03.019
  12. Lipatov, Y. V., Arkhangelsky, I. V., Dunaev, A. V., Gutnikov, S. I., Manylov, M. S., Lazoryak, B. I. (2014). Crystallization of zirconia doped basalt fibers. Thermochimica Acta, 575, 238–243. doi: 10.1016/j.tca.2013.11.002
  13. Svoboda, R., & Málek, J. (2011). Interpretation of crystallization kinetics results provided by DSC. Thermochimica Acta, 526(1-2), 237–251. doi: 10.1016/j.tca.2011.10.005
  14. Golovin, Ju. I., Shibkov, A. A., Zheltoe, M. A., Tatarko, M. A. (1996). Impul'snoe radioizluchenie pri kristallizacii vody. Vestnik Tambovskogo universiteta. Serija: Estestvennye i tehnicheskie nauki, 2 (1), 158–160.
  15. Repalova, O. N. (2008). Vizualizacija processa prigranichnoj kristallizacii pri vynuzhdennom dvizhenii nelinejno vjazkoj zhidkosti po truboprovodam i kanalam. Aviacionno-kosmicheskaja tehnika i tehnologija, 4, 15–18
  16. Matematicheskaja jenciklopedija. Vol. 4 (1984). Moscow: «Sovetskaja jenciklopedija», 608.
  17. Matematicheskaja jenciklopedija. Vol. 1 (1977). Moscow: «Sovetskaja jenciklopedija», 576.
  18. Carmeli, M. (1977). Group Theory and General Relativity, Representations of the Lorentz Group and Their Applications to the Gravitational Field. McGraw-Hill, New York, 311.
  19. Minkowski, H. (1910). Geometrie der Zahlen. Leipzig-Berlin: R. G. Teubner, 320.
  20. Jejnshtejn, A. (1955). Sushhnost' teorii otnositel'nosti. Moscow: Izdatel'stvo inostrannoj literatury, 159.
  21. Jejnshtejn, A. (1966). Osnovnye idei i problemy teorii otnositel'nosti. Vol.. II. Moscow, 120.
  22. Yukihito, S., Hashimoto, S. (2011) Four-dimensional Mathematical Data Visualization via “Embodied Four-dimensional Space Display System”. Forma, 22, 11–18. Available at: http://www.scipress.org/journals/forma/pdf/2601/26010011.pdf (Last accessed: 30.04.2014).
  23. Jel'shejh, A. M. (2014). 4D vizualizacija rabochih prostranstv v hode stroitel'stva. Sovremennye problemy nauki i obrazovanija, 6.
  24. Melihov, I. V. (2014). Kristallizacija kak process samoorganizacii veshhestva. YIII Mezhdunarodnaja nauchnaja konferencija «Kinetika i mehanizm kristallizacii kak forma samoorganizacii veshhestva». Ivanovo.
  25. Terehov, L. L. (1974). Proizvodstvennye funkcii. Statistika. Moscow, 127.
  26. Mihajlov, V. S. (1988). Teorija upravlenija. Kyiv: Vyshha shkola. Golovnoe izdatel'stvo, 312.
  27. Kornienko, N. E., Rud', A. D. (2014). Rezonansno-kolebatel'naja samoorganizacija almazo-grafitopodobnyh sostojanij v lukoobraznom uglerode. VIII Mezhdunarodnaja nauchnaja konferencija "Kinetika i mehanizm kristallizacii. Kristallizacija kak forma samoorganizacii veshhestva". Ivanovo.
  28. Jenciklopedija polimerov. Vol. 2 (1974). Moscow: «Sovetskaja jenciklopedija», 1032.

Downloads

Published

2016-06-15

How to Cite

Borovik, V., & Borovik, V. (2016). Modelling of crystallization process of polymeric composition in space and time. Eastern-European Journal of Enterprise Technologies, 3(5(81), 4–10. https://doi.org/10.15587/1729-4061.2016.69383