Technology of anaerobic-aerobic purification of wastewater from nitrogen compounds after obtaining biogas

Authors

  • Natalia Golub National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-1448-1872
  • Olexandr Kozlovets LLC Envitec Chervonozoryany ave., 6А, Kyiv, Ukraine, 03037, Ukraine https://orcid.org/0000-0002-9032-7044
  • Dariya Voiyevoda National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.72336

Keywords:

fermentation of remainder, co­substrate, wastewater, nitrification – denitrification, anaerobic – aerobic processing

Abstract

The technological parameters, by which the concentration of nitrogen containing compounds can be reduced to 75 % in the process of purification of the waste water from methane tanks after the process of the anaerobic fermentation of the poultry remainder were determined.

The influence of the co­substrate structure on the change of the concentration of nitrogen compounds in wastewater in the process of obtaining biogas from the remainder was shown. The co­substrate, which contains more lignin, contributes to double increase in the content of ammonium ions, in relation to the substrates, the content of lignin in which does not exceed 25 %; besides, it does not increase the content of organic compounds in wastewater. The lower content of lignin leads to the fact that the content of organic substances in wastewater is 70 % higher.

The technological parameters (time of hydraulic retention, the ratio of the flows in the process of wastewater purification) of the anaerobic­aerobic process of wastewater purification were defined.

The obtained laboratory results provide an opportunity to develop the technology of the anaerobic fermentation of the wastes of livestock breeding industry with wastewater reusing in the technological process of anaerobic waste processing. This technology is attractive in cases when in the process of fermentation it is necessary to add water for bringing the content of the methane tank to the optimum humidity; the fermentation of poultry breeding wastes is a good example of such use.

Author Biographies

Natalia Golub, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of environmental biotechnology and bioenergetics 

Olexandr Kozlovets, LLC Envitec Chervonozoryany ave., 6А, Kyiv, Ukraine, 03037

Engineer

Dariya Voiyevoda, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Department of environmental biotechnology and bioenergetics 

References

  1. Geletukha, G., Zheleznaya, T., Kucheruk, P., Oleinik, E. (2013). Sovremennoe sostoyanie i perspektivy bioenergetiki v Ukraine. Analiticheskaya zapyska BAU, 9, 25.
  2. Li, X., Abu-Reesh, I., He, Z. (2015). Development of Bioelectrochemical Systems to Promote Sustainable Agriculture. Agriculture, 5 (3), 367–388. doi: 10.3390/agriculture5030367
  3. Kozlovets, О., Golub, N., Voyevoda, D. (2015). Technology of anaerobic-aerobic treatment wastewaters from nitrogen compounds after biogas. Agroinkom, 6 (4), 43–46.
  4. Eusebi, A. L., Martin-Garcia, N., McAdam, E. J., Jefferson, B., Lester, J. N., Cartmell, E. (2013). Nitrogen removal from temperate anaerobic–aerobic two-stage biological systems: impact of reactor type and wastewater strength. Journal of Chemical Technology and Biotechnology, 88 (11), 2107–2114. doi: 10.1002/jctb.4102
  5. Sgroi, F., Foderà, M., Trapani, A. M. D., Tudisca, S., Testa, R. (2015). Economic evaluation of biogas plant size utilizing giant reed. Renewable and Sustainable Energy Reviews, 49, 403–409. doi: 10.1016/j.rser.2015.04.142
  6. Joseph Igwe, N. (2014). Production of Biogas from Paper Waste Blended With Cow Dung. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8 (10), 58–68. doi: 10.9790/2402-081025868
  7. Shved, O. M. (2014). Current technologies of ammonium withdrawal from wastewater. Biotechnologia acta, 7 (5), 108–113. doi: 10.15407/biotech7.05.108
  8. Zhu, G., Wang, S., Feng, X., Fan, G., Jetten, M. S. M., Yin, C. (2011). Anammox Bacterial Abundance, Biodiversity and Activity in a Constructed Wetland. Environmental Science & Technolog, 45 (23), 9951–9958. doi: 10.1021/es202183w
  9. Strous, M., Heijnen, J. J., Kuenen, J. G., Jetten, M. S. M. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 50 (5), 589–596. doi: 10.1007/s002530051340
  10. Shved, O., Dehestaniathar, S., Novikov, J. (2014). Anammox enrichment and constructed wetland inoculation for improvement of wastewater treatment performance. Adv Environ Health Res, 2 (3), 189–195.
  11. Graaf, A. A., Bruijn, P. De, Robertson, L. A. (1996). Autotrophic growth of anaerobic ammonium–oxidizing microorganisms in a fluidized bed reactor. Microbiology, 142, 2187–2196.
  12. Luesken, F. A., Sanchez, J., van Alen, T. A., Sanabria, J., Op den Camp, H. J. M., Jetten, M. S. M., Kartal, B. (2011). Simultaneous Nitrite-Dependent Anaerobic Methane and Ammonium Oxidation Processes. Applied and Environmental Microbiology, 77 (19), 6802–6807. doi: 10.1128/aem.05539-11
  13. Sablіy, L. A. (2012). Vpliv anaerobnih umov of bіologіchne ochishtennya gospodarsyko–pobutovih stіchnih vod. Vіsnik NUVGP, 2 (57), 24–29.
  14. Mendes, C., Esquerre, K., Queiroz, L. M. (2016). Modeling simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater. Journal of Environmental Management, 177, 119–128. doi: 10.1016/j.jenvman.2016.04.016
  15. Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., Gruber, L. (2007). Biogas production from maize and dairy cattle manure – Influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, 118 (1-4), 173–182. doi: 10.1016/j.agee.2006.05.007
  16. Corno, L., Pilu, R., Tambone, F., Scaglia, B., Adani, F. (2015). New energy crop giant cane (Arundo donax L.) can substitute traditional energy crops increasing biogas yield and reducing costs. Bioresource Technology, 191, 197–204. doi: 10.1016/j.biortech.2015.05.015
  17. Kreuger, E., Escobar, F., Svensson, S.-E, Björnsson, L. (2011). Biogas production from hemp – evaluation of the effect of harvest time on methane. Biomass and bioenergy, 35, 893–900.
  18. Ionomer laboratornyy i–160mi (2007). Obschtstvo s ogranichennoy otvetstvennostyyu «Izmeritelynaya tehnika», 69.
  19. Leybnits, E., Shtruppe, H. G. (1988). Rukovodstvo po gazovoy chromatographii. Part 1. Moscow: Myr, 480.
  20. KND 211.1.4.021–95 (1995). Metodika viznachennya hіmіchnogo spozhivannya (HSC) in poverhnevih i stіchnih vodah.

Downloads

Published

2016-06-30

How to Cite

Golub, N., Kozlovets, O., & Voiyevoda, D. (2016). Technology of anaerobic-aerobic purification of wastewater from nitrogen compounds after obtaining biogas. Eastern-European Journal of Enterprise Technologies, 3(10(81), 35–40. https://doi.org/10.15587/1729-4061.2016.72336