An algorithm of regulating an energy-efficient hot water system with the object model in the controller

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.73385

Keywords:

hot water system (HWS), control algorithm, internal model control (IMC), energy efficiency

Abstract

The article presents a method of controling an energy efficient hot water supply system, a large amount of heat energy in which is supplied by the solar collector. The study proves importance of energy saving technologies and their use in everyday life and industry.

The study presents a generalized structure of the system of hot water supply as a control object. The devised analytical model of dynamics of the system individual elements is based on the equations of heat balance. The model is reduced to a form suitable for use in computer modeling of the dynamics of technological processes. Numeric values of the parameters of the model transfer functions are calculated for the selected model of the solar collector. The resulting model of the control object for a single­circuit system serves as a basis for the comparative studies of various controller structures and control methods that provide the minimum readjustment and the fastest transition process. The comparison is based on classical PID­algorithms and the IMC­approach. The article describes synthesis of the IMC of the temperature of hot water in the point of its supply to users.

It is found that the proposed approach to designing a control algorithm based on the object model allows the IMC provide better performance quality as compared to traditional algorithms. It is shown that the controller synthesis requires taking into account the work of the actuator, and the controller filter order directly affects the valve drive motion making it smooth.

We have considered the prospects of the proposed approach and possible options for upgrading the system.

Author Biographies

Oleksandr Stepanets, National Technical University of Ukraine «Kyiv Polytechnic Institute», Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Heat-and-Power Engineering Department

 

Anastasiia Andrasovych, National Technical University of Ukraine «Kyiv Polytechnic Institute», Peremohy ave., 37, Kyiv, Ukraine, 03056

Department of Heat-and-Power Engineering Department

References

  1. Kompleksna derzhavna programa energozberezhennya Ukraііnу (1997). Postanova Kabіnetu Ministriv Ukraiiny № 148, 220.
  2. Bojko, V. S., Nenya, V. G., Sotnik, M. І., Xovans'kij, S. O. (2009). Analіz chastotnogo regulyuvannya vіdcentrovix nasosіv vodopostachannіa z metoyu energozberezhennya. Visnyk KDPU imeni M. Ostrograds'kogo, 4 (57), 168–171.
  3. Zhovtyanskogo, V. A., Kulika, M. M., Stogniya, B. S. (2006). Strategііa energozberezhennіa v Ukraііnі. Akademperiodika, 1, 510.
  4. Belousov, A. V. (2014) Optimizatsiya upravleniya nizkotemperaturnoy gelioustanovkoy. Pribory i sistemy. Upravlenie, kontrol', diagnostika, 1–7.
  5. Pіvnyak, G. G., Shkrabec, F. P. (2013). Alternatyvna energetyka v Ukraiiny. D.: Nacional'nyj girnychyj universytet, 109.
  6. Renewable energy country attractiveness index (2015). Recai, 43, 40.
  7. The Solar Foundation’s (2016). National solar jobs census, 66.
  8. Renewable energy coming of age (2012). The journal of the International Energy Agency, 2, 44.
  9. The solar cheallenge. ABB review (2015). The corporate technical journal, 2, 76.
  10. Elmegaard, B., Ommen, T. S., Markussen, M., Iversen, J. (2016). Integration of space heating and hot water supply in low temperature district heating. Energy and Buildings, 124, 255–264. doi: 10.1016/j.enbuild.2015.09.003
  11. Kalogirou, S. A. (2013). Solar energy engineering: processes and systems. Academic Press, 760.
  12. Bekman, U. A., Klejn, S., Daffi, Dzh. A. (1982). Raschet sistem solnechnogo teplosnabzheniya. Moscow, 79.
  13. Löf, G. O. G., Tybout, R. A. (1973). Cost of house heating with solar energy. Solar Energy, 14 (3), 253–278. doi: 10.1016/0038-092x(73)90094-7
  14. Todortsev, Yu. K., Beglov, K. V., Maksimenko, I. N. (2005). Modeli elementov ustanovki teplosnabzheniya kak obekta avtomatizatsii. Avtomatyka. Avtomatyzatsiia. Elektrotekhnichni kompleksy ta systemy, 2, 27–31.
  15. Rotach, V. Ya. (1985). Teoriia avtomaticheskogo upravleniia teploenergeticheskimi protsessami. Energatomizdat. Moscow, 296.
  16. O’Dwyer, А. (2000). Handbook of PI and PID Controller Tunning Rules. Imperial College Press, 533.
  17. Arputha, V. S. J., Radhakrishnan, T. K., Sundaram, S. (2005). Controller Selection for Flow Process with Dead Time. Sensors & Transducers Magazine, 62 (12), 473–482.
  18. Novak, P. R., Mendes, N., Oliveira, G. H. C. (2005) Simulation of HVAC Plants in 2 Brazilian Cities Using Matlab/Simulink. Ninth International IBPSA Conference.
  19. Denisenko, V. (2007). PID-regulyatoryi: printsipyi postroeniya i modifikatsii. Sovremennyie tehnologii avtomatizatsii, 90–98.
  20. Zagariy, G. I., Shubladze, A. M. (1988). Sintez sistem upravleniya na osnove kriteriya maksimalnoy stepeni ustoychivosti. Moscow: Energoatomizdat, 104.

Downloads

Published

2016-08-24

How to Cite

Stepanets, O., & Andrasovych, A. (2016). An algorithm of regulating an energy-efficient hot water system with the object model in the controller. Eastern-European Journal of Enterprise Technologies, 4(8(82), 11–18. https://doi.org/10.15587/1729-4061.2016.73385

Issue

Section

Energy-saving technologies and equipment