A model of human thermal comfort for analysing the energy performance of buildings

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.74868

Keywords:

thermal comfort, energy efficiency, building, exergy, human body exergy consumption

Abstract

Despite numerous studies devoted to a comprehensive analysis of buildings as complex energy systems and, in particular, human thermal comfort, an attempt to combine these two aspects to solve the problems of energy conservation and comfort has been made for the first time. The designed comfort model serves to determine the structure of the human body exergy balance and calculate the minimum exergy consumption and comfortable air temperature. The paper presents a structure of the exergy balance in winter and summer, the dependence of the human body exergy consumption on the mean radiant temperature and room air temperature in winter. We have analyzed various models of human thermal comfort and devised a model of a comprehensive analysis of the system “heat source – human being – building envelope”. We have calculated the standard deviation of comfortable room air temperature for different values of the mean radiant temperature, for the exergy model of thermal comfort and the model for which the Predicted Mean Vote (PMV) index of human sensation equals to zero. It is found that the standard deviation equals to 1.4 °C. Using thermal comfort models in a comprehensive analysis allows constructing buildings with low energy or exergy consumption and with high­quality thermal comfort.

Author Biographies

Valerij Deshko, National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of technical sciences, Professor, head of the department

Department of Heat Engineering and Energy Saving

Nadia Buyak, National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremohy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Department of Heat Engineering and Energy Saving

References

  1. Katic, K., Zeiler, V., Boxem., G. (2014). Thermophysiological models: a first comparison. First German – Austrian IBPSA Conference (RWTH Aechen University), 595–602.
  2. Gagge, A. (1971). Standart predictive index of human response to the thermal environment. ASRAE Transactions, 77, 247–262.
  3. Fanger, P. O. (1973). Assessment of man's thermal comfort in practice. Occupational and Environmental Medicine, 30, 313–324. doi: 10.1136/oem.30.4.313
  4. Bogoslovskij, V. N., Skanavi, A. N. (1991). Otoplenie. Moscow: Strojizdat, 735.
  5. Tabunshhikov, A. Yu. (2014). Energoeffektivnye zdaniya i innovacionnye inzhenernye sistemy. Ventilyaciya, otoplenie, kondicionirovanie vozduha, teplosnabzhenie i stroitel'naya teplofizika, 1, 6–11.
  6. Chupryna, H. M. (2014). Integrovana edyna energetychna model' budivli. Upravlinnya rozvytkom skladnyh systemy, 17, 125–131.
  7. Nikitin, E. E. (2011). Optimizaciya vybora energoeffektivnyh proektov modernizacii sistem teplosnabzheniya v usloviyah finansovyh ogranichenij. Problemi zagal'noi energetiki, 3, 25–31.
  8. Malyns'ka, L. V., Malyns'kyj, S. M. (2012). Optymizaciya rozpodilu investycijnogo kapitalu za energoefektyvnymy komponentamy. Ekonomika i region, 4 (35), 172–178.
  9. Ratushnyak, G. S., Ratushnyak, O. G. (2006). Upravlinnya proektamy energozberezhennya shlyahom termorenovacii' budivel’. Vinnycya: VNTU, 106.
  10. Schmidt, D. (2009). Low exergy systems for high-performance buildings and communities. Energy and Buildings, 41 (3), 331–336. doi: 10.1016/j.enbuild.2008.10.005
  11. Açıkkalp, E., Yucer, C. T., Hepbasli, A., Karakoc, T. H. (2014). Advanced low exergy (ADLOWEX) modeling and analysis of a building from the primary energy transformation to the environment. Energy and Buildings, 81, 281–286. doi: 10.1016/j.enbuild.2014.06.024
  12. Investigation of effective parameters on the human body exergy and energy model (2015). 7-th International Exergy, Energy and Enviroment Symposium.
  13. Deshko, V. I., Buyak, N. A. (2009). Ekonomichno docil'nyj teplovyj zahyst budivli z riznymy dzherelamy teploty. Naukovi visti Nacional'nogo tehnichnogo universytetu Ukrai'ny “Kyi'vs'kyj politehnichnyj instytut, 3, 14–20.
  14. Deshko, V. I., Buyak, N. A., Bilous, I. Yu. (2015). Vybir teplovogo zahystu ta dzherela tepla iz vrahuvannyam komfortnyh umov u budivli. Visnyk KNTUTD, 5 (90), 71–80.
  15. Zolfaghari, A., Maerefat, M. (2010). A new simplified model for evaluating non-uniform thermal sensation caused by wearing clothing. Building and Environment, 45 (3), 776–783. doi: 10.1016/j.buildenv.2009.08.015
  16. Tokunaga, K., Shukuya, M. (2011). Human-body exergy balance calculation under un-steady state conditions. Building and Environment, 46 (11), 2220–2229. doi: 10.1016/j.buildenv.2011.04.036
  17. Dovjak, M., Shukuya, M., Krainer, A. (2015). Connective thinking on building envelope – Human body exergy analysis. International Journal of Heat and Mass Transfer, 90, 1015–1025. doi: 10.1016/j.ijheatmasstransfer.2015.07.021
  18. Caliskan, H. (2013). Energetic and exergetic comparison of the human body for the summer season. Energy Conversion and Management, 76, 169–176. doi: 10.1016/j.enconman.2013.07.045
  19. Simone, A., Kolarik, J., Iwamatsu, T., Asada, H., Dovjak, M., Schellen, L. et. al. (2011). A relation between calculated human body exergy consumption rate and subjectively assessed thermal sensation. Energy and Buildings, 43 (1), 1–9. doi: 10.1016/j.enbuild.2010.08.007
  20. Shukuya, M., Saito, M., Isawa K. et al. (2010). Human body exergy balance and thermal comfort. Working Repoprt of IEA ECBS Annex 49, Low exergy systems for high performance building and communities.
  21. Prek, M. (2005). Thermodynamic analysis of human heat and mass transfer and their impact on thermal comfort. International Journal of Heat and Mass Transfer, 48 (3-4), 731–739. doi: 10.1016/j.ijheatmasstransfer.2004.09.006
  22. Gagge, A. P., Stolwilk, J. A., Nishi, Y. (1971). An effective temperature scale based on a simple model of human physiological regulatory response. ASRAE Transactions, 77, 247–262.

Downloads

Published

2016-08-24

How to Cite

Deshko, V., & Buyak, N. (2016). A model of human thermal comfort for analysing the energy performance of buildings. Eastern-European Journal of Enterprise Technologies, 4(8(82), 42–48. https://doi.org/10.15587/1729-4061.2016.74868

Issue

Section

Energy-saving technologies and equipment