Formation of a reference model for the method of inverse dynamics in the tasks of control of underwater complexes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.74875

Keywords:

reference model, method of inverse dynamics, automatic control, underwater complex

Abstract

Main requirements to the systems of automatic control of underwater complexes are specified. Main points of the synthesis of control systems by the method of inverse dynamics are given. The drawbacks of the method of inverse dynamics are defined, which consist in the limiting of the choice of the structure of a reference model and the necessity of bringing a mathematical model of the object of control to the view of a reference model.

A mathematical model of an underwater complex is developed for the synthesis and study of the systems of its control that simulates a one-dimensional motion of an underwater vehicle under conditions of perturbing influence of a tether cable.

Impossibility of the use of the method of inverse dynamics in the classic form for the synthesis of automatic control systems of underwater complexes is determined because their mathematical models contain elements that are set in arbitrary form.

The method of inverse dynamics was improved by applying the principle of decomposition of a reference model, which boils down to its formation as a set of reference submodels based on the actual structure of an object.

Decomposition of a reference model makes it possible to synthesize high–precision control systems of underwater complexes by the method of inverse dynamics and to set reference submodels of dynamics of phase coordinates of an object in the form of arbitrary functions of time.

Automatic control system of a one-dimensional motion of an underwater complex was synthesized by the method of inverse dynamics using the principle of decomposition of a reference model. The author proposed three variants of a reference model of an automatic control system. The first variant makes it possible not to execute conversion of a mathematical model of the object to the view of a reference model. The second and the third variants are formed on the basis of the structure of a mathematical model of an object, presented in the form of Cauchy. This allows setting the dynamics of transition processes for each phase coordinate of the object in the form, accordingly, of differential equations of the first order and arbitrary functions of time.

Computer simulation of an automatic control system revealed that the transitional process of eliminating an error of the controlled magnitude corresponds to the reference one. After eliminating the error, the controlled magnitude strictly follows the set one without delay.

Author Biography

Oleksandr Blintsov, Lviv Polytechnic National University Bandera str., 12, Lviv, Ukraine, 79000

PhD, Associate Professor

Department of Information Security

References

  1. Rowinski, L. (2008). Pojazdy glebinowe. Budowa i wyposazenie. Gdansk: Przedsiebiorstwo Prywatne “WiB”, 593.
  2. Blincov, V. S. (1998). Privjaznye podvodnye sistemy. Kyiv: Naukova dumka, 232.
  3. Kim, D. P. (2004). Teorija avtomaticheskogo upravlenija. Vol. 2. Mnogomernye, nelinejnye, optimal'nye i adaptivnye sistemy. Moscow: FIZMATLIT, 464.
  4. Bojchuk, L. M. (1971). Metod strukturnogo sinteza nelinejnyh sistem avtomaticheskogo upravlenija. Moscow: «Jenergija», 112.
  5. Krut'ko, P. D. (1988). Obratnye zadachi dinamiki upravljaemyh sistem: Nelinejnye modeli. Moscow: Nauka, 326.
  6. Krut'ko, P. D. (2004). Obratnye zadachi dinamiki v teorii avtomaticheskogo upravlenija. Cikl lekcij. Moscow: Mashinostroenie, 576.
  7. Deng, W., Han, D. (2013). Study on simulation of remotely operated underwater vehicle spatial motion. Journal of Marine Science and Application, 12 (4), 445–451. doi: 10.1007/s11804-013-1215-9
  8. He, M., Wang, C., Chang, X., Huang, S. (2012). Analysis of a propeller wake flow field using viscous fluid mechanics. Journal of Marine Science and Application, 11 (3), 295–300. doi: 10.1007/s11804-012-1135-0
  9. Lavrov, N. G., Strashilin, E. Je., Shalimov, L. N. (2009). Primenenii koncepcii obratnyh zadach dinamiki k probleme upravlenija uglovym dvizheniem spuskaemogo apparata. Vestnik JuUrGU. Serija: Komp'juternye tehnologii, upravlenie, radiojelektronika, 26 (159), 4–9.
  10. Blajer, W., Kołodziejczyk, K. (2014). A case study of inverse dynamics control of manipulators with passive joints. Journal of Theoretical and Applied Mechanics, 52 (3), 793–801.
  11. Nadtochij, V. A. (2014). Syntez reguljatora dyferentu pidvodnogo aparatu pry roboti zovnishn'ogo nachipnogo obladnannja. Elektronne vydannja «Visnyk NUK», 3. doi: 10.15589/evn20140309
  12. Chen, Y., Mei, G., Ma, G., Lin, S., Gao, J. (2014). Robust adaptive inverse dynamics control for incertain robot manipulator. International Journal of Innovative Computing, Information and Control, 10 (2), 575–587.
  13. Kusumoputro, B., Priandana, K. (2015). Direct inverse neural network control of a double propeller boat model using a backpropagation neural networks. International Journal of Information Technology & Computer Science, 22 (1). Avaialble at: http://ijitcs.com/volume%2022_No_1/Benyamin%20Kusumoputro.pdf
  14. Zmeu, K. V., Markov, N. A., Notkin, B. S. (2011). Prognozirujushhee inversnoe nejroupravlenie pnevmoprivodom v uslovijah nekontroliruemyh vozmushhenij. Informatika i sistemy upravlenija, 4 (30), 116–123.
  15. Calvo-Rolle, J. L., Fontenla-Romero, O., Pérez-Sánchez, B., Guijarro-Berdiñas, B. (2014). Adaptive Inverse Control Using an Online Learning Algorithm for Neural Networks. Informatica, 25 (3), 401–414. doi: 10.15388/informatica.2014.20
  16. Chen, H., Wan, L., Wang, F., Zhang, G. (2012). Model predictive controller design for the dynamic positioning system of a semi-submersible platform. Journal of Marine Science and Application, 11 (3), 361–367. doi: 10.1007/s11804-012-1144-z
  17. Park, B. S. (2014). Neural Network-Based Tracking Control of Underactuated Autonomous Underwater Vehicles With Model Uncertainties. Journal of Dynamic Systems, Measurement, and Control, 137 (2), 021004. doi: 10.1115/1.4027919
  18. Ramesh, R., Ramadass, N., Sathianarayanan, D., Vedachalam, N., Ramadass, G. A. (2013). Heading control of ROV ROSUB6000 using non-linear model-aided PD approach. International Journal of Emerging Technology and Advanced Engineering, 3 (4), 382–393.
  19. Lukomskij, Ju. A., Korchanov, V. M. (1996). Upravlenie morskimi podvizhnymi ob’ektami. Sankt-Peterburg: Jelmor, 320.
  20. Blincov, O. V. (2012). Matematychna model' dynamiky prostorovogo ruhu kabel'-trosa pryv’jaznoi' pidvodnoi' systemy. Zbirnyk naukovyh prac' NUK, 5-6, 61–63.
  21. Vojtkunskyi, Ja. I. (Ed.) (1985). Spravochnik po teorii korablja. Vol. 1. Gidromehanika. Soprotivlenie dvizheniju sudov. Sudovye dvizhiteli. Leningrad: Sudostroenie, 768.
  22. Blincov, O. V. (2008). Syntez systemy avtomatychnogo keruvannja uporamy rushii'v pryv’jaznogo pidvodnogo aparata v rezhymi kvazistacionarnogo prostorovogo ruhu. Zb. nauk. prac' NUK, 1 (418), 135–141.
  23. Blincov, S. V. (2014). Teoretychni osnovy avtomatychnogo keruvannja avtonomnymy pidvodnymy aparatamy. Mykolaiv: NUK, 222.

Downloads

Published

2016-08-30

How to Cite

Blintsov, O. (2016). Formation of a reference model for the method of inverse dynamics in the tasks of control of underwater complexes. Eastern-European Journal of Enterprise Technologies, 4(2(82), 42–50. https://doi.org/10.15587/1729-4061.2016.74875