The study of nanoparticles of magnitite of the lipid-magnetite suspensions by methods of photometry and electronic microscopy
DOI:
https://doi.org/10.15587/1729-4061.2016.76105Keywords:
magnetite, photometry, electron microscopy, dispersibility, size and effective mean radius of particles, stabilization, magnetite suspension, surface active substance (SAS), sedimentation and aggregative stabilityAbstract
With the aid of the methods of photometry and electronic microscopy, we studied the sedimentation and aggregative stability of the lipidmagnetite suspensions (LMS). Different LMS were obtained. All suspensions are sufficiently stable over time. The best results in stability were displayed by suspensions, in which the ratio Fe3O4:SAS=0,02:0,35 g or 0,04 mass %:0,70 mass % and 0,025:0,35 g or 0,05 mass %:0,70 mass %. We determined size of the particles of magnetite with SAS. The order of mean particle size is defined – it amounts to <d>~76 nm.
It was found that in the course of time (0–48,0 h) and with an increase in the wavelength (210–1000 nm), a gradual increase in the coefficient of transmission is observed from 25 % (210 nm) to 71,9 % (1000 nm) at 0 hours of exposure of the suspension: from 27,5 % (210 nm) to 81,2 % (1000 nm) at the maximum period of exposure of the suspension (48 hours).
The indices of LMS are determined: concentration of the particles – N=1,43 1012 сm3, in 48 hours the concentration decreased by 20 % (N=1,19·1012 сm3); r=38 nm, n=1,48, k=0,01. The distribution function of the particles by size is rather narrow and symmetrical, which indicates that the system of the synthesized nanoparticles is homogenous with a low degree of polydispersity.
The UV spectra of LMS and their components were taken and analyzed. The comparison of the spectra of transmission of suspensions with different degree of dilution testifies to chemical identity of the samples.
The kinetic dependences of the coefficient of transmission for the suspensions with different concentration of magnetite (Fe(ov.).), were examined, based on which we calculated the effective mean radius of the particles of the stabilized magnetite: 76–168 nm. The mean radius of the particles in the lipid suspension of magnetite without stabilizer (reff)=400 nm. Visually, LMS manifested high aggregation stability at the total time of sedimentation reaching several tens of hours.
It was established that LMS can be used as the biologicallyactive and food supplements, which possess the comprehensive action: beneficial biological effect on the human organism; due to the presence of bivalent iron in magnetite and capacity to form transition complexes with oxygen and peroxide radicals (and hydroperoxides), they manifest antioxidant activity, which leads to improvement in the quality and lengthening of the period of storage of the products that contain fat. Furthermore, LMS due to Fe2+ of magnetite can be recommended as the source of easily assimilated iron and as the antianemic means. Therefore, the introduction of LMS to the food products increases its quality, nutritional and biological value.References
- Skurihin, I. M. (1991). VsYo o pische s tochki zreniya himika. Moscow: Vyissha shkola, 33–40.
- Tyutyunnikov, B. N. (1992). Himiya zhirov; 3rd edition. Moscow: Kolos, 448.
- Roginskiy, V. A. (1990). Kinetika okisleniya efirov polinenasyischennyih zhirnyih kislot, ingibirovannogo zameschennyimi fenolami. Kinetika i kataliz, 31 (3), 546–552.
- Demydov, I. M., Hryhorova, A. V. (2012). Vplyv stupenya nenasychenosti oliy na sklad vtorynnykh produktiv yikh okysnenya. Tekhnichni nauky: stan, dosyahnennya i per-spektyvy rozvytku m"yasnoyi, oliye-zhyrovoyi ta molochnoyi haluzey, 42–43.
- Demidov, I. N., Nevmivaka, D. V. (2014). Opredelenie srokov hraneniya zhirov i zhirovyih produktov uskorennyim metodom. Maslozhirovaya otrasl: tehnologii i ryinok, 27–28.
- Denysova, A. Yu., Tsykhanovskaya, Y. V., Skorodumova, O. B., Honcharenko, Ya. M., Pryymak, H. O., Shevchenko, I. V. (2013). Doslidzhennya vplyvu zhyro-mahnetytovoyi suspenziyi na termin zberihannya tvarynnykh zhyriv. Prohresyvna tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv, restorannoho ta hotel'noho hospodarstv i torhivli. Ekonomichna stratehiya i perspektyvy rozvytku sfery torhivli ta posluh, Part 1, 71–72.
- Ilyuha, N. G., Barsova, Z. V., Kovalenko, V. A., Tsihanovskaya, I. V. (2010). Tehnologiya proizvodstva i pokazateli kachestva pischevoy dobavki na osnove magnetita. Eastern-European Journal of Enterprise Technologies, 6 (10 (48)), 32–35. Available at: http://journals.uran.ua/eejet/article/view/5847/5271
- Tsihanovskaya, I. V., Denisova, A. Yu., Skorodumova, O. B., Levitin, E. Ya., Kovalenko, V. A., Aleksandrov, A. V., Barsova, Z. V. (2012). Izuchenie rastvorimosti magnetita v usloviyah, imitiruyuschih pischevaritelnyie protsessyi zheludochno-kishechnogo trakta. Eastern-European Journal of Enterprise Technologies, 6 (6 (60)), 29–31. Available at: http://journals.uran.ua/eejet/article/view/5547/4988
- Tsykhanovs'ka, I. V., Barsova, Z. V., Demydov, I. M., Pavlots'ka, L. F. (2015). Doslidzhennya protsesiv okysnyuval'nykh ta termichnykh peretvorenn' v systemi: oliya – lipido – mahnetytova suspenziya. Prohresyvna tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 1 (21), 353–362.
- Krushenko, G. G., Reshetnikova, S. N. (2011). Problemyi opredeleniya razmerov nanochastits. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M. F. Reshetneva, 2, 167–170.
- Suzdalev, I. P. (2006). Nanotehnologiya: fiziko–himiya nanoklasterov, nanostruktur i nanomaterialov. Moscow: KomKniga, 365.
- Kecskes, L. J., Woodman, R. H., Trevino, S. F., Klotz, B. R., Hirsch, S. G., Gersten, B. L. (2003). Characterization of a Nanosized Iron Powder by Comparative Methods. KONA, 21, 143–150. doi: 10.14356/kona.2003017
- NaBond Technologies Co. Available at: http://www.nabond.com/TiN_nanopowder.html
- Egorova, E. M. et. al. (2002). Stabilnyie nanochastitsyi serebra v vodnih dispersiyah, poluchennyih iz mitsellyarnyih rastvorov. Zhurnal prikladnoy himii, 75 (10), 1620–1625.
- Pimenova, N. V. (2011). Poroshki volframa, poluchennyie razlichnyimi sposobami. Tehnologiya metallov, 2, 25–27.
- Xu, R. (2001). Particle Characterization: Light Scattering Methods. N.Y.: Kluwer Academic Publishers, 410.
- Mamani, J. B., Sibov, T. T., Caous, C. A., Amaro, Jr. E., Gamarra, L. F. (2012). Particokinetics: computational analysis of the superparamagnetic iron oxide nanoparticles deposition process. International Journal of Nanomedicine, 2012:7, 2699–2712. doi: 10.2147/ijn.s30074
- Lou, W., Charalampopoulos, T. T. (1994). On the electromagnetic scattering and absorption of agglomerated small spherical particles. Journal of Physics D: Applied Physics, 27 (11), 2258–2270. doi: 10.1088/0022-3727/27/11/004
- Di Stasio, S. (2000). Feasibility of an optical experimental method for the sizing of primary spherules in sub-micron agglomerates by polarized light scattering. Applied Physics B: Lasers and Optics, 70 (4), 635–643. doi: 10.1007/s003400050872
- Mulholland, G. W., Donnelly, M. K., Hagwood, C. R., Kukuck, S. R., Hackley, V. A., Pui, D. Y. H. (2006). Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis. Journal of Research of the National Institute of Standards and Technology, 111 (4), 257. doi: 10.6028/jres.111.022
- Ivanov, L. A., Kizevetter, D. V., Kiselev, N. N. et. al. (2006). Izmenenie svetovozvrascheniya ot steklyannyih mikrosharikov i progon kachestva sveto-vozvraschayuschih pokryitiy. Opt. zhurn., 73 (1), 35–40.
- Van de Hyulst, G. (1961). Rasseyanie sveta malyimi chastitsami. Moscow: IL, 536.
- Kerker, M. (1969). The scattering of light and other electromagnetic radiation. N.Y., London, Academic Press, 666.
- Xu, R. (2001). Particle Characterization: Light Scattering Methods. N.Y.: Kluwer Academic Publishers, 410.
- Papok, I. M., Petrova, G. P., Anenkova, K. A., Papish, E. A. (2012). Using the dynamic light-scattering method for the analysis of a blood-serum model solution. Moscow University Physics Bulletin, 67 (5), 452–456. doi: 10.3103/s0027134912050104
- Sohrabi-Gilani, N., Makani, S. (2016). Extraction of ultratrace amounts of nelfinavir from biological samples and pharmaceutical formulations using surfactant-modified magnetite nanoparticles followed by spectrophotometric determination. Microchemical Journal, 129, 332–338. doi: 10.1016/j.microc.2016.06.003
- Sutorikhin, I., Bukaty, V., Zalaeva, U., Akulova, O. (2013). Issledovaniya kontsentratsii i razmerov chastits vodnoy vzvesi s pomoschyu opticheskogo metoda fluktuatsiy prozrachnosti. Izvestiya of Altai State University, 1 (2), 189–193. doi 10.14258/izvasu(2013)1.2-39
- Ershov, A. E., Isaev, I. L., Semina, P. N., Markel, V. A., Karpov, S. V. (2012). Effects of size polydispersity on the extinction spectra of colloidal nanoparticle aggregates. Physical Review B, 85 (4). doi: 10.1103/physrevb.85.045421
- Ilyuha, M. G, Tsihanovska, I. V., Barsova, Z. V., TImofeeva, V. P., Vedernikova, I. O. (2010). Patent. na korisnu model # 54284, MPK S 01 G 49/00. SposIb otrimannya magnetitu. Published: 10.11.2010. Byul. # 21, 4.
- Van de Hulst, H. (1957). Light Scattering by Small Particles. N.Y.: J. Willey & Sons, 536.
- Voyutskiy, S. S. (1975). Kurs kolloidnoy himii; 2nd edition. Mosocw: Himiya, 512.
- Ivanov, L. A., Kizevetter, D. V., Kiselev, N. N. et. al. (2006). Izmenenie svetovozvrascheniya ot steklyannyih mikrosharikov i progon kachestva svetovozvraschayuschih pokritiy. Opt. zhurn., 73 (1), 35–40.
- Kizevetter, D. V., Malyugin, V. I. (2009). Odnovremennoe izmerenie razmerov i skorosti dvizheniya chastits. Zhurn. tehn. fiziki, 79 (2), 90–95.
- Chekhun, V., Horobets', S., Horobets', O., Dem"yanenko, I. (2011). Mahnitni nanostruktury v pukhlynnykh klitynakh. Visn. NAN Ukrayiny, 11, 13–20.
- Alexandrov, A., Tsykhanovska, I., Gontar, T., Kokodiy, N., Dotsenko, N. (2016). Stability and morphological characteristics of lipid-magnetite suspensions. Eureka: Life Sciences, 3 (3), 14–25. doi: 10.21303/2504-5695.2016.00143
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Alexandr Alexandrov, Iryna Tsykhanovska, Tatуana Gontar, Nicholas Kokodiy, Natalia Dotsenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.