Designing the technology of express diagnostics of electric train's traction drive by means of fractal analysis

Authors

  • Oleksandr Babanin Ukrainian state university of a railway transportation Feyerbaxa sq., 7, Kharkiv, Ukraine, 61050, Ukraine
  • Vladislav Bulba Southern railway Konareva str., 7, Kharkiv, Ukraine, 61052, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.76520

Keywords:

vibroacoustic signal, tooth alignment, the Hurst index, sample, traction drive, express diagnostics, electric train

Abstract

The object of this study was the development of technology of the express diagnostics of the traction drives of electric trains. Its base was obtaining, processing and fractal analysis of vibroacoustic signals, which makes it possible to forecast the period of service of this unit in between planned maintenance works. We carried out the research into the failures of equipment of electric trains in operation, which showed that the share of defects in the traction reducers is the most significant and amounts to 41,2 % of the total number of failures in the carriage part. The method of selection of acoustic components (samples) was created, which makes it possible to separate them from the complete vibroacoustic signal. Its characteristic peculiarity is initial link to the time interval, determining final duration, as well as selection of a number of cyclically repeated components with each rotation of the large gear of the traction drive. Based on the wavelet conversion of detailing coefficients with high content of noise components, we used the method of denoising vibroacoustic samples with the help of soft thresholding. As the diagnostic parameter, the fractal Hurst index is proposed. The process of its determining is described and the maximum ranges of its change from the point of view of persistence are found.

Accordingly, the Hurst index's matching one or another range makes it possible to tell the presence or absence of defect in the traction drive, which can be later on, during a regular maintenance, categorized and removed. Thus, the application of the comprehensive technology of the express diagnostics makes it possible to promptly assess the technical condition of the traction drives of electric trains and to forecast their working capacity in between the planned types of repairs. 

Author Biographies

Oleksandr Babanin, Ukrainian state university of a railway transportation Feyerbaxa sq., 7, Kharkiv, Ukraine, 61050

Doctor of technical sciences, Professor

Department of operation and repair of a rolling stock

Vladislav Bulba, Southern railway Konareva str., 7, Kharkiv, Ukraine, 61052

Engineer of a technical department

Service of suburban passenger transportations

References

  1. Baranov, V. M. (1998) Akustisheskay diagnostica i control na predpriatiax. Moscow: Nauka, 304.
  2. Ermolov, I. N., Aleshin, N. P. (1991). Akustisheskie metody kontrolya. Moscow: Vysha shkola, 283.
  3. Barkov, A. V. (2002). Vibracionnay diagnostika kolesno–reduktornyx blokov na geleznodorognom transporte. SPb.: Izd. centr SPb GMTU, 101.
  4. Artobolevskiy, I. I., Balickiy, U. I., Genkin, M. D. (1979). Vvedenie v texnisheskuy diagnostiku mashin. Moscow: Glavnay redakcia fiziko–matematisheskoy literatury, 296.
  5. Pavlov, B. V. (1981). Akustisheskay diagnostica mexanizmov. Moscow: Mashinostroenie, 224.
  6. Genkin, M. D., Sokolova, A. G. (1987). Vibroakustisheskaya diagnostica mashin i mexanizmov. Moscow: Mashinostroenie, 282.
  7. Kintcel, T. (2005) Programmirovanie zvuka na PK. Moscow: DMK Press, 432.
  8. Randal, R. B. (1989). Thastotniy analiz. Daniya: Kampaniy Larsen i syn, 389.
  9. Ivanov, N. I. (2008). Ingenernaya akustica. Teoriya i praktica borby s shumom. Moscow: Logos, 423.
  10. Sosulin, Y. G. (1978). Teoriya obnarugeniya i ocenivaniya stoxastisheskix signalov. Moscow: Sov. radio, 319.
  11. Tixonov, V. I. (1983). Optimalny priyom signalov. Moscow: Sov. radio, 320.
  12. Levin, B. R. (1989). Teoretisheskie osnovy statistisheskoy radiotexniki. Moscow: Sov. radio, 653.
  13. Max, G. (1983) Metody i texnika obrabotki signalov pri fizisheskix izmereniax. Moscow: Mir, 312.
  14. Bobrovnikov, Y. U. (2012). Diagnostisheskie kompleksy elektropodvignogo sostava. Habarovsk.: Izdatelstvo DVGUPS, 94.
  15. Pansheluga, V. A. (2015). Lokalny fractalny analiz shumopodobnyx vremennyx ryadov metodom vsex soshetaniy. Biofizika, 2, 395–410.
  16. Zinenko, A. V. (2012). R/S analiz na fondovom rynke. Biznes–informatika, 3 (21), 24–30.
  17. Mandelbrot, B. (2002). Fractalnay geometriya prirody. Institut komputernyx issledovaniy, 656.
  18. Alekseev, A. D., Vasilenko, T. A., Kirillov, A. K. (2008). Fractal analysis of the hierarchic structure of fossil coal surface. Journal of Mining Science, 44 (3), 235–244. doi: 10.1007/s10913-008-0013-2
  19. Uchino, E., Koga, T., Misawa, H., Suetake, N. (2013). Tissue characterization of coronary plaque by kNN classifier with fractal-based features of IVUS RF-signal. Journal of Intelligent Manufacturing, 25 (5), 973–982. doi: 10.1007/s10845-013-0793-3
  20. Telesca, L., Colangelo, G., Lapenna, V., Macchiato, M. (2005). Fractal approaches in investigating the time dynamics of self-potential hourly variability. International Journal of Earth Sciences, 94 (2), 285–300. doi: 10.1007/s00531-004-0457-9
  21. Goh, V., Sanghera, B., Wellsted, D. M., Sundin, J., Halligan, S. (2009). Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis. European Radiology, 19 (6), 1358–1365. doi: 10.1007/s00330-009-1304-y
  22. Schaefer, D. W., Martin, J. E., Wiltzius, P., Cannell, D. S. (1984). Fractal Geometry of Colloidal Aggregates. Physical Review Letters, 52 (26), 2371–2374. doi: 10.1103/physrevlett.52.2371
  23. Yulmetyev, R., Gafarov, F., Hänggi, P., Nigmatullin, R., Kayumov, S. (2001). Possibility between earthquake and explosion seismogram differentiation by discrete stochastic non-Markov processes and local Hurst exponent analysis. Physical Review E, 64 (6). doi: 10.1103/physreve.64.066132
  24. Trofimovish, V. V. (2006) Mexanisheskay shast elektropodvignogo sostava. Habarovsk.: Izdatelstvo DVGUPS, 100.
  25. Kiselev, B. V. (2007). Ob interpretacii statistisheskogo R–S–analiza (pokazatel Xersta). Ushenye zapisky SPbGU, 40 (440), 121–130.
  26. Dyakonov, V. P. (2010). Veyvlet–analiz v Matlab realnyx oscilogram. Kontrolno–izmeritelnye pribory i sistemy, 3, 19–25.
  27. Zosimov, V. V. (1994). Fractaly i skeyling v akustice. Akustisheskiy gurnal, 5, 709–737.

Downloads

Published

2016-08-31

How to Cite

Babanin, O., & Bulba, V. (2016). Designing the technology of express diagnostics of electric train’s traction drive by means of fractal analysis. Eastern-European Journal of Enterprise Technologies, 4(9(82), 45–54. https://doi.org/10.15587/1729-4061.2016.76520

Issue

Section

Information and controlling system