Developing a method for prediction of relapsing myocardial infarction based on interpolation diagnostic polynomial

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.81004

Keywords:

method of prediction, relapsing myocardial infarction, ordinal classification of states, diagnostic interpolation diagnostic polynomial

Abstract

In this paper, based on the estimations of expert opinions of the persons who make decisions, we determined a set of criteria for evaluation of the states of patients and of the classes of possible states for predicting the relapsing myocardial infarction. We propose a method for predicting the relapsing myocardial infarction on the basis of the designed interpolation diagnostic polynomial to determine the probability of occurence of the relapsing myocardial infarction. The developed method is based on the methodology of verbal decision analysis. This method makes it possible, taking into account the totality of attributes of disease, their combination and mutual effect, to increase the accuracy of prediction by 2,7 % (in comparison to the method-prototype). This provides a possibility to prevent the relapse of disease and sudden coronary death. The proposed method is of practical interest and may be applied for the diagnosis and prediction of development of other human cardiovascular system diseases. 

Author Biographies

Sofia Yakubovska, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Assistant

Department of Economic Сybernetics and Management of Economic Security

Olena Vуsotska, Kharkiv National University of radio electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor

Department of Biomedical Engineering

Andrei Porvan, Kharkiv National University of Radioelectronics Nauki ave., 14, Kharkiv, Ukraine, 61166

PhD, Assistant Professor

Department of Biomedical Engineering

Dmytro Yelchaninov, National Technical University «Kharkiv Polytechnic Institute» Bagaliya str., 21, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Informatics and Intellectual Property Department

Elena Linnyk, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD, Associate Professor

Department of Biomedical Engineering 

References

  1. Prevention of Recurrences of Myocardial Infarction and Stroke Study. The PREMISE programme: country projects (2016). WHO. Available at: http://www.who.int/cardiovascular_diseases/priorities/secondary_prevention/country/en/index1.html
  2. Mendis, S., Thygesen, K., Kuulasmaa, K., Giampaoli, S., Mahonen, M., Ngu Blackett, K., Lisheng, L. (2010). World Health Organization definition of myocardial infarction: 2008-09 revision. International Journal of Epidemiology, 40 (1), 139–146. doi: 10.1093/ije/dyq165
  3. Vysotskaya, E. V., Strashnenko, A. N., Demin, Y. A., Prasol, I. V., Sinenko, C. A. (2013). A method for prognosis of primary open-angle glaucoma, International Review on Computers and Software, 8 (8), 1943–1949.
  4. Ryabkova, E. B., Korenevskij, H. A. (2011). Metod sinteza nechetkih reshayushchih pravil po informacii o geometricheskoj strukture mnogomernyh dannyh. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 7 (8), 128–137.
  5. Vorob'eva, O. M., Mishustin, V. N., Chernova, I. V. (2012). Sintez reshayushchih pravil dlya prognozirovaniya infarkta miokarda po pokazatelyam perekisnogo okisleniya lipidov i antiokislitel'noj aktivnosti. Izvestiya YUZGU, 2 (Part 2), 249–252.
  6. Vorob'eva, O. M., Kolomiec, I. V. (2009). Analiz rasprostranennosti i prognozirovanie infarkta miokarda, gipertonicheskoj bolezni v g. Kurske. Vestnik novyh medicinskih tekhnologij, 2, 16–17.
  7. Sazonova, N. S., Susnina, A. V., Yakushin, S. S. (2003). Pat. № 2197889 RF, MPK A61V 5/00. Sposob prognozirovaniya vozmozhnosti vozniknoveniya recidiviruyushchego infarkta miokarda. Zayavitel' i patentoobladatel' Ryazanskij gosudarstvennyj medicinskij universitet im. akad. I. P. Pavlova; declarated: 12.05.1999; published: 10.02.2003.
  8. Nakatani, D., Sakata, Y., Suna, S., Usami, M., Matsumoto, S., Shimizu, M. et. al. (2013). Incidence, Predictors, and Subsequent Mortality Risk of Recurrent Myocardial Infarction in Patients Following Discharge for Acute Myocardial Infarction. Circulation Journal, 77 (2), 439–446. doi: 10.1253/circj.cj-11-1059
  9. Leander, K., Wiman, B., Hallqvist, J., Andersson, T., Ahlbom, A., de Faire, U. (2007). Primary risk factors influence risk of recurrent myocardial infarction/death from coronary heart disease: results from the Stockholm Heart Epidemiology Program (SHEEP). European Journal of Cardiovascular Prevention & Rehabilitation, 14 (4), 532–537. doi: 10.1097/hjr.0b013e328012e3cc
  10. Chaudhry, S. I., Khan, R. F., Chen, J., Dharmarajan, K., Dodson, J. A., Masoudi, F. A. et. al. (2014). National Trends in Recurrent AMI Hospitalizations 1 Year After Acute Myocardial Infarction in Medicare Beneficiaries: 1999-2010. Journal of the American Heart Association, 3 (5), e001197–e001197. doi: 10.1161/jaha.114.001197
  11. Cui, J., Forbes, A., Kirby, A., Marschner, I., Simes, J., Hunt, D. et. al. (2010). Semi-parametric risk prediction models for recurrent cardiovascular events in the LIPID study. BMC Medical Research Methodology, 10 (1). doi: 10.1186/1471-2288-10-27
  12. Larichev, O. I. (2006). Verbal'nyj analiz reshenij. Moscow: Nauka, 181.
  13. Vysockaya, E. V. (2014). Metod opredeleniya znachimosti mnenij ehkspertov pri formirovanii ehkspertnoj gruppy dlya prinyatiya medicinskih reshenij. Sistemi obrobki іnformacіi, 2 (118), 216–221.
  14. Vysockaya, E. V. (2015). Koncepciya povysheniya kachestva prinyatiya reshenij vracha. Іnformacіjnі tekhnologіi: nauka, tekhnіka, tekhnologіya, osvіta, zdorov'ya, Part ІІІ, 32.
  15. Vysockaya, E. V., Pecherskaya, A. I., Dovnar', A. I. (2014). Medical decisions under uncertainty. Eastern-European Journal of Enterprise Technologies, 3 (4 (69)), 16–21. doi: 10.15587/1729-4061.2014.23935
  16. Vysockaya, E. V. (2014). Razrabotka strategii povysheniya kachestva podderzhki prinyatiya reshenij vracha obshchej praktiki. Sistemi obrobki іnformacіi, 5 (121), 142–145.

Downloads

Published

2016-10-30

How to Cite

Yakubovska, S., Vуsotska O., Porvan, A., Yelchaninov, D., & Linnyk, E. (2016). Developing a method for prediction of relapsing myocardial infarction based on interpolation diagnostic polynomial. Eastern-European Journal of Enterprise Technologies, 5(9 (83), 41–49. https://doi.org/10.15587/1729-4061.2016.81004

Issue

Section

Information and controlling system