Optimization of uniformly stressed structures of cylindrical tanks in CAD

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.85451

Keywords:

uniformly stressed components, Kummer and Whittaker functions, plates of variable thickness, CAD

Abstract

It was established that in the housings of apparatuses that work under pressure, a flat bottom is the weakest element, because of which it is necessary to increase its thickness by 3–5 times in comparison with the wall thickness. This is connected with the fact that under conditions of loading of the bottoms of vessels, mechanical stresses in them are distributed extremely unevenly. Therefore, we set the purpose to decrease metal intensity of apparatuses at the stage of their automated designing by creating uniformly stressed structural elements with the retention of indices of their reliability through rational redistribution of the used materials inside the element, which ensures equal stress and minimally permissible mass of the finished product.

We attempted to solve this problem through varying one of the main design characteristics – thickness of the flat bottom of a tank, loaded with internal pressure.

To achieve this aim, a method for the optimization of shape of a round plate with variable thickness was developed. It implies transition from the fixed thickness of the plate in its center to its fixed volume. Within the method of optimization, we proposed a model of bend of a round plate with variable thickness in the form of exponential Gauss function, with regard to dependence of thickness in the center of a plate on its volume.

In the method for solving the equation of plate bending, degenerate hyper-geometric functions of Kummer and Whittaker are used. The method was tested in the process of real automated design of the tank for storing caustic liquids.

Author Biographies

Oksana Saveleva, Odessa National Polytechnic University Shevchenko ave., 1, Odessa, Ukraine, 65044

Doctor of Technical Science, Associate Professor

Department of Oilgas and chemical mechanical engineering

Yurii Khomyak, Odessa National Polytechnic University Shevchenko ave., 1, Odessa, Ukraine, 65044

PhD, Associate Professor

Department of Oilgas and chemical mechanical engineering 

Iraida Stanovska, Odessa National Polytechnic University Shevchenko ave., 1, Odessa, Ukraine, 65044

PhD

Department of the higher mathematics and systems modeling

Alla Toropenko, Odessa National Polytechnic University Shevchenko ave., 1, Odessa, Ukraine, 65044

PhD

Department of Oilgas and chemical mechanical engineering 

Evgeniya Naumenko, Odessa National Polytechnic University Shevchenko ave., 1, Odessa, Ukraine, 65044

Department of Oilgas and chemical mechanical engineering 

References

  1. Arnab, B., Islam, S. M. R., Khalak, A. A., Afsar, A. M. (2014). Finite Difference Solution to Thermoelastic Field in a Thin Circular FGM Disk with a Concentric Hole. Procedia Engineering, 90, 193–198. doi: 10.1016/j.proeng.2014.11.836
  2. Cerulli, C., Meijer, P., van Tooren, M., Hofstee, J. (2004). Parametric Modeling of Aircraft Families for Load Calculation Support. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. doi: 10.2514/6.2004-2019
  3. Goncharova, O., Maksimov, V., Jankovich, D. (1997). Method of Durability Life Approval of Motor Vehicle Axle Beam for Design Optimization. XVI Conference “Science and Motor Vehicles-97”. Belgrade, 175–178.
  4. Vodopyanov, A. I., Pavlenko, P. V. (2007). Prichiny i mehanizmyi razrusheniy v ekspluatatsii lopatok turbinyi dvigatelya NK-8-2U. Nauchnyiy vestnik MGTU GA. Seriya Aeromehanika i prochnost, 119, 36–40.
  5. Aryassov, G., Gornostajev, D. (2013). The calculation of round plates under the action of local loading by generalized functions. 13th International Symposium «Topical Problems in the Field of Electrical and Power Engineering». Parnu, 296–299.
  6. Stanovskiy, A. L., Maksimov, V. G., Goncharova, O. E. (1998). Optimizatsiya profilya nesuschih elementov metallokonstruktsiy. Naukoviy visnik OGPU, 6, 139–144.
  7. Daschenko, O., Stanovskyi, O., Khomiak, Yu., Naumenko, E. (2016). Mathematical model of connections cylindrical shell with the bottom variable thickness. «Information technology and automation – 2016»: Proceedings IX Annual scientific conference. Оdessa, ONAFT, 29–30.
  8. Mousavi, S. M., Reddy, J. N., Romanoff, J. (2016). Analysis of anisotropic gradient elastic shear deformable plates. Acta Mechanica, 227 (12), 3639–3656. doi: 10.1007/s00707-016-1689-z
  9. Evseychik, Yu. B., Medvedev, K. V. (2008). Chuvstvitelnost gidroakusticheskogo datchika davleniya. Gidravlika i gidrotehnika, 62, 10–16.
  10. Shlyahin, D. A. (2013). Vyinuzhdennyie osesimmetrichnyie kolebaniya tonkoy krugloy bimorfnoy plastinyi stupenchatoy tolschinyi i zhestkosti. Inzhener-nyiy vestnik Dona, 1 (24), 21–25.
  11. Brar, G. S., Hari, Y., Williams, D. K. (2010). Calculation of Working Pressure for Cylindrical Vessel Under External Pressure. ASME 2010 Pressure Vessels and Piping Conference: Volume 3. doi: 10.1115/pvp2010-25173
  12. Bovnegra, L. V., Bondarenko, V. V., Koshulyan, S. V. (2013). Obobschenie metoda virtualnogo obekta na raschetyi optimalnyih parametrov slozhnyih system. Materialy ХХІ seminara «Modelirovanie v prikladnyih nauchnyih issledovaniyah», 112–113.
  13. Prihodko, N. B., Leyzerovich, G. S., Konova, G. V. (2014). O dvuh sposobah postroeniya teorii plastin peremennoy tolschinyi. Uchenyie zapiski KnAGTU, 4-1 (20), 46–54.
  14. Rogalevich, V. V., Timashev, S. A. (2012). Novyiy priblizhennyiy metod rascheta gibkih plastin postoyannoy i peremennoy tolschinyi. Akademicheskiy vestnik UralNIIproekt, 1, 67–71.
  15. Novikov, V. V., Maksimov, V. G., Balan, S. A., Goncharova, O. E. (1999). Matematicheskoe modelirovanie profilya ravnogo soprotivleniya. Optimizatsiya v materialovedenii. Odessa: AstroPrint, 151.
  16. Gradshteyn, I. S., Zwillinger, D., Moll, V. (2015). Mathematical Physics and Mathematics. Amsterdam: Academic Press, 1133.
  17. Homyak, Yu. M., Tshigam, G. Zh. (2015). Rozvyazok zadachi viginu krugloyi plastini zminnoyi tovschini z vikoristannyam funktsiy UIttekera. Pedagogicheskoe masterstvo prepodavatelja vysshej shkoly, 3, 94–95.
  18. Aomoto, K., Kita, M. (2011). Theory of Hypergeometric Functions. Springer Monographs in Mathematics. doi: 10.1007/978-4-431-53938-4

Downloads

Published

2016-12-22

How to Cite

Saveleva, O., Khomyak, Y., Stanovska, I., Toropenko, A., & Naumenko, E. (2016). Optimization of uniformly stressed structures of cylindrical tanks in CAD. Eastern-European Journal of Enterprise Technologies, 6(7 (84), 10–16. https://doi.org/10.15587/1729-4061.2016.85451

Issue

Section

Applied mechanics