Exploring the properties of ultrafiltration membranes with a dynamic layer and bactericidal inoculation for the purification of natural waters
DOI:
https://doi.org/10.15587/1729-4061.2016.86187Keywords:
ultrafiltration, biocidal inoculation, purification of natural waters, biofilm, permeability of membranesAbstract
The authors established that with the creation at the surface and in the pore space of membrane of a dynamic layer, there occurs a sharp reduction in the performance efficiency of membranes due to the biological fouling. Biofilms block the outflow thus decreasing the productivity of membranes. In order to eliminate the blocking, it is proposed to introduce biocidal additives to the dynamic layer, which made it possible to decrease the influence of biofouling. The formation of a dynamic layer in the pore space and at the surface of membrane is substantiated with the help of simulation using the filtration equation of Poiseuille. To confirm theoretical positions under laboratory conditions, we developed a procedure for the modification of a flat filter. Next, at a semi-industrial installation we conducted a comparison of operation of membranes with a biocidal additive, without it and with a periodic washing by sodium hypochlorite. The membrane with a biocidal inoculation at the surface demonstrated a stable work at the highest efficiency.
Testing at flat membranes may be used as an express method for evaluating the modifying properties of different compositions of additives. This makes it possible to rapidly estimate effectiveness of different compositions of reagents for the surface modification of any type of filters.
Specific productivity of the membrane with a modified layer without a biocide treatment reached 58 l×m2/h, of the membrane with a periodic treatment – 97,5 l×m2/h, while the membrane with a modified layer and a bactericidal inoculation demonstrated a more stable performance and its productivity in seven days amounted to 89 l×m2/h.
The proposed technology enables obtaining water with the required quality via one-stage treatment, which considerably simplifies the process of water preparation.References
- Lahoussine-Turcaud, V., Wiesner, M. R., Bottero, J.-Y., Mallevialle J. (1990). Coagulation pretreatment for ultrafiltration of a surface water. Reaserch and Technology, American Water Works Association, 82–87.
- Alpatova, A. L. (2001). Ultrafiltratsionnaya ochistka prirodnyih vod ot guminovyih veschestv i tyazhelyih metallov. Kyiv, 137.
- Zapol'skyy, A. K., Mishkova-Klymenko, N. A., Astrelin, I. M., Bryk, M. T., Hvozdyak, P. I., Knyaz'kovi, T. V.; Zapol'skohyy A. K. (Ed.) (2000). Fizyko-khimichni osnovy ochyshchennya stichnykh vod. Kyiv: Libra, 552.
- Svittsov, A. A. (2007). Vvedenie v membrannuyu tehnologiyu. Moscow: DeLi print, 208.
- Dyitnerskiy, Yu. I. (1975). Membrannyie protsessyi razdeleniya zhidkih smesey. Moscow: Himiya, 232.
- Mulder, M.; Yampolskyy, Yu. P. (Ed.) (1999). Vvedenie v membrannuyu tehnologiyu. Moscow: Mir, 513.
- Flemming, H.-C., Schaule, G., Griebe, T., Schmitt, J., Tamachkiarowa, A. (1997). Biofouling—the Achilles heel of membrane processes. Desalination, 113 (2-3), 215–225. doi: 10.1016/s0011-9164(97)00132-x
- Sim, S. T. V., Suwarno, S. R., Chong, T. H., Krantz, W. B., Fane, A. G. (2013). Monitoring membrane biofouling via ultrasonic time-domain reflectometry enhanced by silica dosing. Journal of Membrane Science, 428, 24–37. doi: 10.1016/j.memsci.2012.10.032
- Dong, L., Yang, H., Liu, S., Wang, X., Xie, Y. F. (2015). Fabrication and anti-biofouling properties of alumina and zeolite nanoparticle embedded ultrafiltration membranes. Desalination, 365, 70–78. doi: 10.1016/j.desal.2015.02.023
- Bucs, S. S., Valladares Linares, R., Vrouwenvelder, J. S., Picioreanu, C. (2016). Biofouling in forward osmosis systems: An experimental and numerical study. Water Research, 106, 86–97. doi: 10.1016/j.watres.2016.09.031
- Huang, S., Voutchkov, N., Jiang, S. C. (2013). Investigation of environmental influences on membrane biofouling in a Southern California desalination pilot plant. Desalination, 319, 1–9. doi: 10.1016/j.desal.2013.03.016
- Vrouwenvelder, J. S., van der Kooij, D. (2003). Diagnosis of fouling problems of NF and RO membrane installations by a quick scan. Desalination, 153 (1-3), 121–124. doi: 10.1016/s0011-9164(02)01111-6
- Kramer, J. F., Tracey, D. A. (1995). The solution to reverse osmosis biofouling. In Proceedings of IDA World Congress on Desalination and Water Use, Abu Dhabi, Saudi Arabia, 4, 33–44.
- Abd El Aleem, F. A., Al-Sugair, K. A., Alahmad, M. I. (1998). Biofouling problems in membrane processes for water desalination and reuse in Saudi Arabia. International Biodeterioration & Biodegradation, 41 (1), 19–23. doi: 10.1016/s0964-8305(98)80004-8
- Ridgway, H. F.; B. S. Parekh (Ed.) (1988). Microbial adhesion and biofouling of reverse osmosis membranes. In Reverse Osmosis Technology: Application for High Pure Water Production, 429–481.
- Shinenkova, N. A., Povorov, A. A., Erohina, L. V. (2005). Primenenie mikroultrafiltracii dlja ochistki vod poverhnostnyh istochnikov. Seriya critical technologies. Membranes, 28 (4), 21–25.
- Pervov, A. G., Andrianov, A. P., Telitchenko, E. A. (2004). Vliyanie biologicheskogo zagryazneniya na rabotu obratnoosmoticheskih i ultrafiltratsionnyih membrannyih elementov. Seriya critical technologies. Membranes, 1 (21), 3–17.
- Zhang, J., Zhang, M., Zhang, K. (2014). Fabrication of poly(ether sulfone)/poly(zinc acrylate) ultrafiltration membrane with anti-biofouling properties. Journal of Membrane Science, 460, 18–24. doi: 10.1016/j.memsci.2014.02.030
- Li, J., Liu, X., Lu, J., Wang, Y., Li, G., Zhao, F. (2016). Anti-bacterial properties of ultrafiltration membrane modified by graphene oxide with nano-silver particles. Journal of Colloid and Interface Science, 484, 107–115. doi: 10.1016/j.jcis.2016.08.063
- Chen, Y., Zhang, Y., Zhang, H., Liu, J., Song, C. (2013). Biofouling control of halloysite nanotubes-decorated polyethersulfone ultrafiltration membrane modified with chitosan-silver nanoparticles. Chemical Engineering Journal, 228, 12–20. doi: 10.1016/j.cej.2013.05.015
- Ilina, T. S., Romanova, Yu. M., Gintsburg, A. L. (2004). Bioplenki kak sposob suschestvovaniya bakteriy v okruzhayuschey srede i organizme hozyaina: fenomen, geneticheskiy kontrol i sistemyi regulirovaniya ih razvitiya. Genetika, 40 (11), 1445–1456.
- Smirnova, T. A. (2010). Strukturno-funktsionalnaya harakteristika bakterialnyih bioplenok. Mikrobiologiya, 79 (4), 435–446.
- Kulishov, S. A., Lyikov, I. N. (2016). Mikrobnyie bioplenki kak ob'ekt izucheniya v nauchno-issledovatelskoy rabote uchaschihsya. Molodoy uchenyiy, 4, 240–245.
- Rojas-Serrano, F., Pérez, J. I., Gómez, M. Á. (2016). Comparative study of in-line coagulation and/or ozonization pre-treatment for drinking-water production with spiral-wound ultrafiltration membranes. Chemical Engineering and Processing: Process Intensification, 105, 21–29. doi: 10.1016/j.cep.2016.04.004
- Nechitaylo, N. P., Belyaev, N. N. (2015). Chislennoe modelirovanie zakuporki poryi ultrafiltratsionnoy membranyi pri ee modifikatsii. Problemy vodosnabzheniya, vodootvedeniya i gidravliki, 25 (324), 169–175.
- Dytnerskij, Y. I. (1978). Obratnyj osmos i ultrafiltracija. Moscow: Himia, 351.
- Nechitaylo, N. P. (2016). Nauchnoe obosnovanie obrazovaniya dinamicheskogo sloya na poverhnosti ultrafiltratsionnoy membranyi dlya ochistki prirodnyih vod s ispolzovaniem reagentov. Scientia, Tehnika, 2 (2), 26–28.
- Pervov, A. G., Motovilova, N. B., Andrianov, A. P. (2001). Ultrafiltracija -tehnologija budushhego. Vodosnabzhenie i sanitarnaya tehnika, 9, 9–12.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Nikolay Nechitaylo, Elena Nagornaya, Elena Nesterova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.