Exploring the properties of ultrafiltration membranes with a dynamic layer and bactericidal inoculation for the purification of natural waters

Authors

  • Nikolay Nechitaylo State Higher Education Establishment «Pridneprovsk State Academy of Civil Engineering and Architecture» Chernishevskogo str., 24-A, Dnepr, Ukraine, 49600, Ukraine https://orcid.org/0000-0001-5963-0590
  • Elena Nagornaya State Higher Education Establishment «Pridneprovsk State Academy of Civil Engineering and Architecture» Chernishevskogo str., 24-A, Dnepr, Ukraine, 49600, Ukraine https://orcid.org/0000-0003-4027-9336
  • Elena Nesterova State Higher Education Establishment «Pridneprovsk State Academy of Civil Engineering and Architecture» Chernishevskogo str., 24-A, Dnepr, Ukraine, 49600, Ukraine https://orcid.org/0000-0003-1035-6572

DOI:

https://doi.org/10.15587/1729-4061.2016.86187

Keywords:

ultrafiltration, biocidal inoculation, purification of natural waters, biofilm, permeability of membranes

Abstract

The authors established that with the creation at the surface and in the pore space of membrane of a dynamic layer, there occurs a sharp reduction in the performance efficiency of membranes due to the biological fouling. Biofilms block the outflow thus decreasing the productivity of membranes. In order to eliminate the blocking, it is proposed to introduce biocidal additives to the dynamic layer, which made it possible to decrease the influence of biofouling. The formation of a dynamic layer in the pore space and at the surface of membrane is substantiated with the help of simulation using the filtration equation of Poiseuille. To confirm theoretical positions under laboratory conditions, we developed a procedure for the modification of a flat filter. Next, at a semi-industrial installation we conducted a comparison of operation of membranes with a biocidal additive, without it and with a periodic washing by sodium hypochlorite. The membrane with a biocidal inoculation at the surface demonstrated a stable work at the highest efficiency.

Testing at flat membranes may be used as an express method for evaluating the modifying properties of different compositions of additives. This makes it possible to rapidly estimate effectiveness of different compositions of reagents for the surface modification of any type of filters.

Specific productivity of the membrane with a modified layer without a biocide treatment reached 58 l×m2/h, of the membrane with a periodic treatment – 97,5 l×m2/h, while the membrane with a modified layer and a bactericidal inoculation demonstrated a more stable performance and its productivity in seven days amounted to 89 l×m2/h.

The proposed technology enables obtaining water with the required quality via one-stage treatment, which considerably simplifies the process of water preparation.

Author Biographies

Nikolay Nechitaylo, State Higher Education Establishment «Pridneprovsk State Academy of Civil Engineering and Architecture» Chernishevskogo str., 24-A, Dnepr, Ukraine, 49600

PhD, Associate Professor

Department of Water Supply, Water Disposal and Hydraulics

Elena Nagornaya, State Higher Education Establishment «Pridneprovsk State Academy of Civil Engineering and Architecture» Chernishevskogo str., 24-A, Dnepr, Ukraine, 49600

PhD, Associate Professor

Department of Water Supply, Water Disposal and Hydraulics

Elena Nesterova, State Higher Education Establishment «Pridneprovsk State Academy of Civil Engineering and Architecture» Chernishevskogo str., 24-A, Dnepr, Ukraine, 49600

PhD, Associate Professor

Department of Water Supply, Water Disposal and Hydraulics

References

  1. Lahoussine-Turcaud, V., Wiesner, M. R., Bottero, J.-Y., Mallevialle J. (1990). Coagulation pretreatment for ultrafiltration of a surface water. Reaserch and Technology, American Water Works Association, 82–87.
  2. Alpatova, A. L. (2001). Ultrafiltratsionnaya ochistka prirodnyih vod ot guminovyih veschestv i tyazhelyih metallov. Kyiv, 137.
  3. Zapol'skyy, A. K., Mishkova-Klymenko, N. A., Astrelin, I. M., Bryk, M. T., Hvozdyak, P. I., Knyaz'kovi, T. V.; Zapol'skohyy A. K. (Ed.) (2000). Fizyko-khimichni osnovy ochyshchennya stichnykh vod. Kyiv: Libra, 552.
  4. Svittsov, A. A. (2007). Vvedenie v membrannuyu tehnologiyu. Moscow: DeLi print, 208.
  5. Dyitnerskiy, Yu. I. (1975). Membrannyie protsessyi razdeleniya zhidkih smesey. Moscow: Himiya, 232.
  6. Mulder, M.; Yampolskyy, Yu. P. (Ed.) (1999). Vvedenie v membrannuyu tehnologiyu. Moscow: Mir, 513.
  7. Flemming, H.-C., Schaule, G., Griebe, T., Schmitt, J., Tamachkiarowa, A. (1997). Biofouling—the Achilles heel of membrane processes. Desalination, 113 (2-3), 215–225. doi: 10.1016/s0011-9164(97)00132-x
  8. Sim, S. T. V., Suwarno, S. R., Chong, T. H., Krantz, W. B., Fane, A. G. (2013). Monitoring membrane biofouling via ultrasonic time-domain reflectometry enhanced by silica dosing. Journal of Membrane Science, 428, 24–37. doi: 10.1016/j.memsci.2012.10.032
  9. Dong, L., Yang, H., Liu, S., Wang, X., Xie, Y. F. (2015). Fabrication and anti-biofouling properties of alumina and zeolite nanoparticle embedded ultrafiltration membranes. Desalination, 365, 70–78. doi: 10.1016/j.desal.2015.02.023
  10. Bucs, S. S., Valladares Linares, R., Vrouwenvelder, J. S., Picioreanu, C. (2016). Biofouling in forward osmosis systems: An experimental and numerical study. Water Research, 106, 86–97. doi: 10.1016/j.watres.2016.09.031
  11. Huang, S., Voutchkov, N., Jiang, S. C. (2013). Investigation of environmental influences on membrane biofouling in a Southern California desalination pilot plant. Desalination, 319, 1–9. doi: 10.1016/j.desal.2013.03.016
  12. Vrouwenvelder, J. S., van der Kooij, D. (2003). Diagnosis of fouling problems of NF and RO membrane installations by a quick scan. Desalination, 153 (1-3), 121–124. doi: 10.1016/s0011-9164(02)01111-6
  13. Kramer, J. F., Tracey, D. A. (1995). The solution to reverse osmosis biofouling. In Proceedings of IDA World Congress on Desalination and Water Use, Abu Dhabi, Saudi Arabia, 4, 33–44.
  14. Abd El Aleem, F. A., Al-Sugair, K. A., Alahmad, M. I. (1998). Biofouling problems in membrane processes for water desalination and reuse in Saudi Arabia. International Biodeterioration & Biodegradation, 41 (1), 19–23. doi: 10.1016/s0964-8305(98)80004-8
  15. Ridgway, H. F.; B. S. Parekh (Ed.) (1988). Microbial adhesion and biofouling of reverse osmosis membranes. In Reverse Osmosis Technology: Application for High Pure Water Production, 429–481.
  16. Shinenkova, N. A., Povorov, A. A., Erohina, L. V. (2005). Primenenie mikroultrafiltracii dlja ochistki vod poverhnostnyh istochnikov. Seriya critical technologies. Membranes, 28 (4), 21–25.
  17. Pervov, A. G., Andrianov, A. P., Telitchenko, E. A. (2004). Vliyanie biologicheskogo zagryazneniya na rabotu obratnoosmoticheskih i ultrafiltratsionnyih membrannyih elementov. Seriya critical technologies. Membranes, 1 (21), 3–17.
  18. Zhang, J., Zhang, M., Zhang, K. (2014). Fabrication of poly(ether sulfone)/poly(zinc acrylate) ultrafiltration membrane with anti-biofouling properties. Journal of Membrane Science, 460, 18–24. doi: 10.1016/j.memsci.2014.02.030
  19. Li, J., Liu, X., Lu, J., Wang, Y., Li, G., Zhao, F. (2016). Anti-bacterial properties of ultrafiltration membrane modified by graphene oxide with nano-silver particles. Journal of Colloid and Interface Science, 484, 107–115. doi: 10.1016/j.jcis.2016.08.063
  20. Chen, Y., Zhang, Y., Zhang, H., Liu, J., Song, C. (2013). Biofouling control of halloysite nanotubes-decorated polyethersulfone ultrafiltration membrane modified with chitosan-silver nanoparticles. Chemical Engineering Journal, 228, 12–20. doi: 10.1016/j.cej.2013.05.015
  21. Ilina, T. S., Romanova, Yu. M., Gintsburg, A. L. (2004). Bioplenki kak sposob suschestvovaniya bakteriy v okruzhayuschey srede i organizme hozyaina: fenomen, geneticheskiy kontrol i sistemyi regulirovaniya ih razvitiya. Genetika, 40 (11), 1445–1456.
  22. Smirnova, T. A. (2010). Strukturno-funktsionalnaya harakteristika bakterialnyih bioplenok. Mikrobiologiya, 79 (4), 435–446.
  23. Kulishov, S. A., Lyikov, I. N. (2016). Mikrobnyie bioplenki kak ob'ekt izucheniya v nauchno-issledovatelskoy rabote uchaschihsya. Molodoy uchenyiy, 4, 240–245.
  24. Rojas-Serrano, F., Pérez, J. I., Gómez, M. Á. (2016). Comparative study of in-line coagulation and/or ozonization pre-treatment for drinking-water production with spiral-wound ultrafiltration membranes. Chemical Engineering and Processing: Process Intensification, 105, 21–29. doi: 10.1016/j.cep.2016.04.004
  25. Nechitaylo, N. P., Belyaev, N. N. (2015). Chislennoe modelirovanie zakuporki poryi ultrafiltratsionnoy membranyi pri ee modifikatsii. Problemy vodosnabzheniya, vodootvedeniya i gidravliki, 25 (324), 169–175.
  26. Dytnerskij, Y. I. (1978). Obratnyj osmos i ultrafiltracija. Moscow: Himia, 351.
  27. Nechitaylo, N. P. (2016). Nauchnoe obosnovanie obrazovaniya dinamicheskogo sloya na poverhnosti ultrafiltratsionnoy membranyi dlya ochistki prirodnyih vod s ispolzovaniem reagentov. Scientia, Tehnika, 2 (2), 26–28.
  28. Pervov, A. G., Motovilova, N. B., Andrianov, A. P. (2001). Ultrafiltracija -tehnologija budushhego. Vodosnabzhenie i sanitarnaya tehnika, 9, 9–12.

Downloads

Published

2016-12-27

How to Cite

Nechitaylo, N., Nagornaya, E., & Nesterova, E. (2016). Exploring the properties of ultrafiltration membranes with a dynamic layer and bactericidal inoculation for the purification of natural waters. Eastern-European Journal of Enterprise Technologies, 6(5 (84), 46–53. https://doi.org/10.15587/1729-4061.2016.86187