Development of systematics ranked structure of environmental protecting equipment for cleaning of gas emissions, wastewater and solid waste

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.86462

Keywords:

ranked structure of systematics, environment protecting equipment, magnetic separator, genetic code

Abstract

The information about existing methods and technical means of purification of gas emissions, wastewater and solid waste processing is summarized. Selection of an object of study – the functional class of magnetic separators – is conditioned by the fact that in practice it is the most widely used environmental equipment for magnetic purification. Devices for magnetic purification are the most technically implemented and described in the information sources.

To build a systematics of selected functional class the concept is proposed, whose objective is to develop a ranked taxonomy structure of environment protecting equipment for magnetic purification.

At the beginning of systematics building the full species composition of the investigated class of devices for magnetic purification was defined. System information on the number and genetic structure of Species enabled to determine the ranked structure of the main taxonomic units of the class. The proposed ranked structure of systematics consists of two parts: taxa that are defined by the periodic structure of the genetic classification of the field primary sources, and taxa that take into account the artificial characteristic – an environment where the magnetic purification is carried out.

The results of the research can be used to create systematic catalogs, information and design databases and knowledge bases in the field of environment protecting equipment and in the learning process for students of natural and engineering specialties.

Author Biographies

Iryna Soloshych, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

PhD, Associated Professor

Department of Ecological Security and Organization of Nature

Iryna Shvedchykova, East Ukrainian Volodymyr Dahl National University Centralnyi ave., 59-a, Sievierodonetsk, Ukraine, 93400

Doctor of Technical Sciences, Professor

Department of Electrical Engineering 

References

  1. Sutherland, K. (2007). Choosing equipment: Cleaning air and gas. Filtration & Separation, 44 (1), 16–19. doi: 10.1016/s0015-1882(07)70020-4
  2. Prabhansu, Karmakar, M. K., Chandra, P., Chatterjee, P. K. (2015). A review on the fuel gas cleaning technologies in gasification process. Journal of Environmental Chemical Engineering, 3 (2), 689–702. doi: 10.1016/j.jece.2015.02.011
  3. Leha, Yu. H., Mysliuk, O. O., Korneliuk, N. M. (2001). Shliakhy pokrashchennia ochyshchennia dymovykh haziv teploelektrostantsii. Ekolohichna bezpeka, 1, 42–50.
  4. Abma, W. R., Driessen, W., Haarhuis, R., van Loosdrecht, M. C. M. (2010). Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Science & Technology, 61 (7), 1715–1722. doi: 10.2166/wst.2010.977
  5. Ellouze, E., Amar, R. B., Ben Salah, A. H. (2005). Cross-flow microfiltration using ceramic membranes applied to the cuttlefish effluents treatment: effect of operating parameters and the addition of pre or post-treatment. Desalination, 177 (1-3), 229–240. doi: 10.1016/j.desal.2004.12.010
  6. Zhang, L., Xu, Z. (2016). A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. Journal of Cleaner Production, 127, 19–36. doi: 10.1016/j.jclepro.2016.04.004
  7. Zagirnyak, M. V. (2008). Magnetic separators. Proceedings of the Seventeenth International Electrotechnical and Computer Science Conference ERK 2008, 7–8.
  8. Zagirnjak, M. V., Branspiz, Ju. A., Shvedchikova, I. A. (2011). Magnitnye separatory. Problemy proektirovanija. Kyiv: Tehnіka, 224.
  9. Oberteuffer, J. (1974). Magnetic separation: A review of principles, devices, and applications. IEEE Transactions on Magnetics, 10 (2), 223–238. doi: 10.1109/tmag.1974.1058315
  10. Svoboda, J. (1987). Magnetic Methods for the Treatment of minerals. Elsevier, 692.
  11. Unkelbach, K. H. (1990). Magnetic separators mode of operation and applicability for the separation of materials. Köln: KHD Humboldt Wedag AG, 87.
  12. Zagirnjak, M. V., Volkanin, E. E. (2014). Razrabotka metoda opredelenija geometricheskih parametrov jelementa matricy vysokogradientnogo separatora nanochastic. Tehnіchna elektrodinamіka, 6, 24–29.
  13. Bol'shoj jenciklopedicheskij slovar'. 2nd edition (2000). Moscow, St. Petersburg, 1247.
  14. Shynkarenko, V. F. (2002). Osnovy teorii' evoljucii' elektromehanichnyh system. Kyiv: Naukova dumka, 288.
  15. Shinkarenko, V. F., Zagirnyak, M. V., Shvedchikova, I. A. (2010). Structural-Systematic Approach in Magnetic Separators Design. Studies in Computational Intelligence, 201–217. doi: 10.1007/978-3-642-16225-1_11
  16. Shynkarenko, V. F., Shymans'ka, A. A. (2015). Slovnyk iz strukturnoi' ta genetychnoi' elektromehaniky. Kyiv: NTUU «KPI», 112.
  17. Shinkarenko, V. F., Avgustinovich, A. A. (2003). Geneticheskij analiz i sistematika vidov asinhronnyh mashin postupatel'nogo dvizhenija (rod ploskih). Elektrotehnіka і elektromehanіka, 4, 92–100.

Downloads

Published

2016-12-27

How to Cite

Soloshych, I., & Shvedchykova, I. (2016). Development of systematics ranked structure of environmental protecting equipment for cleaning of gas emissions, wastewater and solid waste. Eastern-European Journal of Enterprise Technologies, 6(10 (84), 17–23. https://doi.org/10.15587/1729-4061.2016.86462