The use of spectrum-zonal images by landsat 7 etm+ for diagnosing soil characteristics of Ukrainian polissya

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.91251

Keywords:

sensing, soil properties, screening,  albedo, hydromorphicity, correlation connection, vegetation index

Abstract

A dependence of characteristics of the spectrum-zonal raster images by Landsat 7 ETM+ was examined, in particular, albedo of reflectivity r and certain vegetation indexes, on the soil properties in the transition zone of Central Polissya in Ukraine. In present paper we applied an algorithm for constructing agrochemical schematic maps using Quantum GIS.

An importance was established of the selection of approaches to diagnosing the magnitudes of soil and agrochemical indicators of soil properties with attributes of hydromorphicity, particularly during the formation of statistical sampling to conduct a correlation-regression analysis.

It is demonstrated that the possibility of identification and the quality of diagnosing certain individual indicators of soil properties, as well as informativeness of certain channels, depends on putting an accent (priority) in the form of compiling uniform statistical sample. It was found that combining a sample by the uniformity of the type of soil and granulometric composition of soils allows a more pronounced identification of dynamic magnitude of the nutrient content – movable phosphorus and exchangeable potassium.

It is established that given the multi-component screening of the Earth surface with vegetation, a degree of correlation connection between characteristics of spectrum-zonal images and the indicators of soil properties beyond the vegetation period is significantly reduced.

Author Biographies

Petro Trofimenko, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

PhD, Associate Professor

Department of Geodesy and Land Survey

Olena Zubova, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

Postgraduate student, assistant

Department of Geodesy and Land Survey

Nadiya Trofimenko, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

PhD, Associate Professor

Department of Geodesy and Land Survey

Iryna Karas, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

PhD, Associate Professor

Department of Geodesy and Land Survey

Fedir Borysov, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

PhD, Associate Professor

Department of Electrification, Automation of Production and Engineering Ecology

References

  1. Achasov, A. B. (2008). Vykorystannja cyfrovyh modelej rel'jefu pry doslidzhenni g'runtovogo pokryvu. Visnyk KhNAU, 157–159. Available at: http://base.dnsgb.com.ua/files/journal/V-Harkivskogo-NAU/V-Harkivskogo-NAU_grunt/2008-1/2008_01_22.pdf
  2. Bulygin, S. Ju., Achasov, A. B., Liseckij, F. N. (2012). Ispol'zovanie integral'nogo analiza dannyh distancionnogo zondirovanija i cifrovyh modelej rel'efa pri kartografirovanii pochvennogo pokrova Chernozemnoj zony. Nauchnye vedomosti BelGU, 21 (21 (140)), 142–152.
  3. Bulygin, S. Ju., Bidolah, D. I., Liseckij, F. N. (2011). Ocenka gumussirovannosti pochv putem obrabotki ih cifrovyh fotoizobrazhenij. Nauchnye vedomosti BelGU, 16 (15), 154–159.
  4. Sorokina, N. P., Kozlov, D. N. (2009). Opyt cifrovogo kartografirovanija struktury pochvennogo pokrova. Pochvovedenie, 2.
  5. Shatohin, A. V., Achasov, A. B. (2005). Ispol'zovanie sovremennyh tehnologij pri kartografirovanii pochvennogo pokrova Severnoj Doneckoj Stepi. Pochvovedenie, 7.
  6. Truskavec'kyj, S. R. (2011). The geoinformational digital mapping of some soil parameters. Visnyk ZhNAEU, 1 (1), 27–35.
  7. Savin, I. Ju., Otarov, A., Zhogolev, A. V., Ibraeva, M. A., Dujsekov, S. (2014). Vyjavlenie mnogoletnih izmenenij ploshhadi zasolennyh pochv Shaul'derskogo oroshaemogo massiva po kosmicheskim snimkam Landsat. Bjul. Pochvennogo instituta im. V. V. Dokuchaeva, 74, 49–65.
  8. Ivahnenko, A. G. (1986). Modelirovanie slozhnyh sistem: informacionnyj podhod. Kyiv: Naukova dumka, 136.
  9. Poshivajlo, Ja. G., Karetina, I. P. (2012). Sovershenstvovanie metodov sozdanija pochvennyh kart naselennyh punktov. Interjekspo Geo-Sibir', 2.
  10. Ryzhova, I. M. (1987). Matematicheskoe modelirovanie pochvennyh processov. Moscow: Izd-vo Mosk. Un-ta, 82.
  11. Mel'nichuk, Ju. A., Klimenko, K. V. (2014). Ispol'zovanie dannyh distancionnogo zondirovanija zemli dlja monitoringa transformacii zemel' na primere Sakskogo rajona Kryma. Visnyk Nacional'nogo universytetu vodnogo gospodarstva ta pryrodokorystuvannja, 3, 168–177.
  12. Shatohin, A. V., Lyndin, M. O. (2000). Monitoryng gumusnogo stanu chornozemiv za dopomogoju kosmichnogo zonduvannja. Visnyk agrarnoi' nauky, 14–16.
  13. Vagen, T.-G., Winowiecki, L. A. (2013). Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. Environmental Research Letters, 8 (1), 015011. doi: 10.1088/1748-9326/8/1/015011
  14. Ukraynskyj, P. A., Chepelev, O. A. (2011). Studying of soils granulometric structure at Pooskolye according to space pictures decoding. Yzvestyja Samarskogo nauchnogo centra Rossyjskoj akademyy nauk, 13 (1-5), 1225–1229.
  15. Puzachenko, M. Ju., Puzachenko, Ju. G., Kozlov, D. N., Fedjaeva, M. V. (2006). Kartografirovanie moshhnosti organogennogo i gumusovogo gorizontov lesnyh pochv i bolot juzhnotaezhnogo landshafta (jugo – zapad Valdajskoj vozvyshennosti) na osnove trehmernoj modeli rel'efa i distancionnoj informacii (Landsat 7). Issledovanie Zemli iz kosmosa, 4, 70–78.
  16. Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Satellite (ERTS) Symposium, NASA SP-351, 1, 309–317.
  17. Popov, M. A., Stankevich, S. A., Kozlova, A. A. (2012). Distancionnaja ocenka riska degradacii zemel' s ispol'zovaniem kosmicheskih snimkov i geoprostranstvennogo modelirovanija. Dop. NAN Ukrai'ny, 6, 100–104.
  18. Zhongming, W., Lees, B. G., Feng, J., Wanning, L., Haijing, S. (2010). Stratified vegetation cover index: A new way to assess vegetation impact on soil erosion. CATENA, 83 (1), 87–93. doi: 10.1016/j.catena.2010.07.006
  19. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48 (2), 119–126. doi: 10.1016/0034-4257(94)90134-1
  20. Vagen, T.-G., Shepherd, K. D., Walsh, M. G. (2006). Sensing landscape level change in soil fertility following deforestation and conversion in the highlands of Madagascar using Vis-NIR spectroscopy. Geoderma, 133 (3-4), 281–294. doi: 10.1016/j.geoderma.2005.07.014
  21. Byndych, T. Ju., Koljada, L. P., Truskaveckij, S. R. (2015). Sovremennye podhody k distancionnoj fitoindikacii sostojanija pochvennogo pokrova. Pochvovedenie i agrohimija, 2 (55), 30–38.
  22. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25 (3), 295–309. doi: 10.1016/0034-4257(88)90106-x
  23. Perelik osnovnyh normatyvnyh dokumentiv u galuzi g'runtoznavstva, agrohimii' ta ohorony g'runtiv (2009). Kharkiv: NNC "Instytut g'runtoznavstva ta agrohimii' imeni O. N. Sokolovs'kogo", 37. Available at: http://www.issar.com.ua/downloads/docs/standarty.pdf
  24. Landsat 7 Science Data Users Handbook (1998). Report, USGS Unnumbered Series, GIP, Geological Survey (U.S.), 78–90. Available at: http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf
  25. Barker, J. L., Dolan, S. K., Sabelhaus, P. A., Williams, D. L., Irons, J. R., Markham, B. L. et. al. (1999). Landsat – 7 Mission and Early Results. Sensors, Systems, and Next-Generation Satellites III. doi: 10.1117/12.373220
  26. Teillet, P. M., Barker, J. L., Markham, B. L., Irish, R. R., Fedosejevs, G., Storey, J. C. (2001). Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sensing of Environment, 78 (1-2), 39–54. doi: 10.1016/s0034-4257(01)00248-6
  27. Thome, K., Markham, B., Barker, J., Slater, P., Biggar, S. (1997). Radiometric Calibration of Landsat. Photogrammetric Engineering and Remote Sensing, 63 (7), 853–858. Available at: http://info.asprs.org/publications/pers/97journal/july/1997_jul_853-858.pdf
  28. Tripathi. N. K., Rai, B. K., Dwivedi, P. (1997). Spatial Modeling of Soil Alkalinity in GIS Environment Using IRS data. 18th Asian conference on remote sensing. Kuala-lampur, A.8.1–A.8.6. Available at: http://a-a-r-s.org/aars/proceeding/ACRS1997/Papers/AGS97-6.htm

Downloads

Published

2017-02-28

How to Cite

Trofimenko, P., Zubova, O., Trofimenko, N., Karas, I., & Borysov, F. (2017). The use of spectrum-zonal images by landsat 7 etm+ for diagnosing soil characteristics of Ukrainian polissya. Eastern-European Journal of Enterprise Technologies, 1(10 (85), 11–19. https://doi.org/10.15587/1729-4061.2017.91251