The use of spectrum-zonal images by landsat 7 etm+ for diagnosing soil characteristics of Ukrainian polissya
DOI:
https://doi.org/10.15587/1729-4061.2017.91251Keywords:
sensing, soil properties, screening, albedo, hydromorphicity, correlation connection, vegetation indexAbstract
A dependence of characteristics of the spectrum-zonal raster images by Landsat 7 ETM+ was examined, in particular, albedo of reflectivity r and certain vegetation indexes, on the soil properties in the transition zone of Central Polissya in Ukraine. In present paper we applied an algorithm for constructing agrochemical schematic maps using Quantum GIS.
An importance was established of the selection of approaches to diagnosing the magnitudes of soil and agrochemical indicators of soil properties with attributes of hydromorphicity, particularly during the formation of statistical sampling to conduct a correlation-regression analysis.
It is demonstrated that the possibility of identification and the quality of diagnosing certain individual indicators of soil properties, as well as informativeness of certain channels, depends on putting an accent (priority) in the form of compiling uniform statistical sample. It was found that combining a sample by the uniformity of the type of soil and granulometric composition of soils allows a more pronounced identification of dynamic magnitude of the nutrient content – movable phosphorus and exchangeable potassium.
It is established that given the multi-component screening of the Earth surface with vegetation, a degree of correlation connection between characteristics of spectrum-zonal images and the indicators of soil properties beyond the vegetation period is significantly reduced.References
- Achasov, A. B. (2008). Vykorystannja cyfrovyh modelej rel'jefu pry doslidzhenni g'runtovogo pokryvu. Visnyk KhNAU, 157–159. Available at: http://base.dnsgb.com.ua/files/journal/V-Harkivskogo-NAU/V-Harkivskogo-NAU_grunt/2008-1/2008_01_22.pdf
- Bulygin, S. Ju., Achasov, A. B., Liseckij, F. N. (2012). Ispol'zovanie integral'nogo analiza dannyh distancionnogo zondirovanija i cifrovyh modelej rel'efa pri kartografirovanii pochvennogo pokrova Chernozemnoj zony. Nauchnye vedomosti BelGU, 21 (21 (140)), 142–152.
- Bulygin, S. Ju., Bidolah, D. I., Liseckij, F. N. (2011). Ocenka gumussirovannosti pochv putem obrabotki ih cifrovyh fotoizobrazhenij. Nauchnye vedomosti BelGU, 16 (15), 154–159.
- Sorokina, N. P., Kozlov, D. N. (2009). Opyt cifrovogo kartografirovanija struktury pochvennogo pokrova. Pochvovedenie, 2.
- Shatohin, A. V., Achasov, A. B. (2005). Ispol'zovanie sovremennyh tehnologij pri kartografirovanii pochvennogo pokrova Severnoj Doneckoj Stepi. Pochvovedenie, 7.
- Truskavec'kyj, S. R. (2011). The geoinformational digital mapping of some soil parameters. Visnyk ZhNAEU, 1 (1), 27–35.
- Savin, I. Ju., Otarov, A., Zhogolev, A. V., Ibraeva, M. A., Dujsekov, S. (2014). Vyjavlenie mnogoletnih izmenenij ploshhadi zasolennyh pochv Shaul'derskogo oroshaemogo massiva po kosmicheskim snimkam Landsat. Bjul. Pochvennogo instituta im. V. V. Dokuchaeva, 74, 49–65.
- Ivahnenko, A. G. (1986). Modelirovanie slozhnyh sistem: informacionnyj podhod. Kyiv: Naukova dumka, 136.
- Poshivajlo, Ja. G., Karetina, I. P. (2012). Sovershenstvovanie metodov sozdanija pochvennyh kart naselennyh punktov. Interjekspo Geo-Sibir', 2.
- Ryzhova, I. M. (1987). Matematicheskoe modelirovanie pochvennyh processov. Moscow: Izd-vo Mosk. Un-ta, 82.
- Mel'nichuk, Ju. A., Klimenko, K. V. (2014). Ispol'zovanie dannyh distancionnogo zondirovanija zemli dlja monitoringa transformacii zemel' na primere Sakskogo rajona Kryma. Visnyk Nacional'nogo universytetu vodnogo gospodarstva ta pryrodokorystuvannja, 3, 168–177.
- Shatohin, A. V., Lyndin, M. O. (2000). Monitoryng gumusnogo stanu chornozemiv za dopomogoju kosmichnogo zonduvannja. Visnyk agrarnoi' nauky, 14–16.
- Vagen, T.-G., Winowiecki, L. A. (2013). Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. Environmental Research Letters, 8 (1), 015011. doi: 10.1088/1748-9326/8/1/015011
- Ukraynskyj, P. A., Chepelev, O. A. (2011). Studying of soils granulometric structure at Pooskolye according to space pictures decoding. Yzvestyja Samarskogo nauchnogo centra Rossyjskoj akademyy nauk, 13 (1-5), 1225–1229.
- Puzachenko, M. Ju., Puzachenko, Ju. G., Kozlov, D. N., Fedjaeva, M. V. (2006). Kartografirovanie moshhnosti organogennogo i gumusovogo gorizontov lesnyh pochv i bolot juzhnotaezhnogo landshafta (jugo – zapad Valdajskoj vozvyshennosti) na osnove trehmernoj modeli rel'efa i distancionnoj informacii (Landsat 7). Issledovanie Zemli iz kosmosa, 4, 70–78.
- Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Satellite (ERTS) Symposium, NASA SP-351, 1, 309–317.
- Popov, M. A., Stankevich, S. A., Kozlova, A. A. (2012). Distancionnaja ocenka riska degradacii zemel' s ispol'zovaniem kosmicheskih snimkov i geoprostranstvennogo modelirovanija. Dop. NAN Ukrai'ny, 6, 100–104.
- Zhongming, W., Lees, B. G., Feng, J., Wanning, L., Haijing, S. (2010). Stratified vegetation cover index: A new way to assess vegetation impact on soil erosion. CATENA, 83 (1), 87–93. doi: 10.1016/j.catena.2010.07.006
- Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48 (2), 119–126. doi: 10.1016/0034-4257(94)90134-1
- Vagen, T.-G., Shepherd, K. D., Walsh, M. G. (2006). Sensing landscape level change in soil fertility following deforestation and conversion in the highlands of Madagascar using Vis-NIR spectroscopy. Geoderma, 133 (3-4), 281–294. doi: 10.1016/j.geoderma.2005.07.014
- Byndych, T. Ju., Koljada, L. P., Truskaveckij, S. R. (2015). Sovremennye podhody k distancionnoj fitoindikacii sostojanija pochvennogo pokrova. Pochvovedenie i agrohimija, 2 (55), 30–38.
- Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25 (3), 295–309. doi: 10.1016/0034-4257(88)90106-x
- Perelik osnovnyh normatyvnyh dokumentiv u galuzi g'runtoznavstva, agrohimii' ta ohorony g'runtiv (2009). Kharkiv: NNC "Instytut g'runtoznavstva ta agrohimii' imeni O. N. Sokolovs'kogo", 37. Available at: http://www.issar.com.ua/downloads/docs/standarty.pdf
- Landsat 7 Science Data Users Handbook (1998). Report, USGS Unnumbered Series, GIP, Geological Survey (U.S.), 78–90. Available at: http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf
- Barker, J. L., Dolan, S. K., Sabelhaus, P. A., Williams, D. L., Irons, J. R., Markham, B. L. et. al. (1999). Landsat – 7 Mission and Early Results. Sensors, Systems, and Next-Generation Satellites III. doi: 10.1117/12.373220
- Teillet, P. M., Barker, J. L., Markham, B. L., Irish, R. R., Fedosejevs, G., Storey, J. C. (2001). Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sensing of Environment, 78 (1-2), 39–54. doi: 10.1016/s0034-4257(01)00248-6
- Thome, K., Markham, B., Barker, J., Slater, P., Biggar, S. (1997). Radiometric Calibration of Landsat. Photogrammetric Engineering and Remote Sensing, 63 (7), 853–858. Available at: http://info.asprs.org/publications/pers/97journal/july/1997_jul_853-858.pdf
- Tripathi. N. K., Rai, B. K., Dwivedi, P. (1997). Spatial Modeling of Soil Alkalinity in GIS Environment Using IRS data. 18th Asian conference on remote sensing. Kuala-lampur, A.8.1–A.8.6. Available at: http://a-a-r-s.org/aars/proceeding/ACRS1997/Papers/AGS97-6.htm
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Petro Trofimenko, Olena Zubova, Nadiya Trofimenko, Iryna Karas, Fedir Borysov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.