A study of an effect of the parameters of niobium-based ion cleaning of a surface on its structure and properties

Authors

  • Hanna Postelnyk National Technical University «Kharkiv Polytechnic Institute» Bagaliya str., 21, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-5290-7566
  • Sergey Knyazev National Technical University «Kharkiv Polytechnic Institute» Bagaliya str., 21, Kharkiv, Ukraine, 61002, Ukraine
  • Andrei Meylekhov National Technical University «Kharkiv Polytechnic Institute» Bagaliya str., 21, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-8142-6024
  • Vyacheslav Stolbovoy National Science Center "Kharkiv Institute of Physics and Technology" Akademichna str., 1, Kharkiv, Ukraine, 61108, Ukraine
  • Dmitriy Kovteba National Science Center "Kharkiv Institute of Physics and Technology" Akademichna str., 1, Kharkiv, Ukraine, 61108, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2017.91788

Keywords:

plasma, vacuum arc evaporation, displacement potential, microhardness, deposition, mixing, sputtering, substrate

Abstract

The paper describes using techniques of structural engineering in a comprehensive study of the effects of the negative displacement potential, nitrogen and argon pressures, as well as the distance from a sample to the cathode on the processes of sputtering and depositing. In practice, it is highly important to obtain steel surfaces with high mechanical properties and low roughness. The highest microhardness is manifested at the highest degree of sputtering on the samples at Ub=–1,300 V. It has been determined that the presence of nitrogen in the vacuum chamber shifts the equilibrium point of sputtering and depositing towards a higher Ub. It has been established that the presence of argon in the ion bombardment process increases the sputtering rate, whereas the presence of active nitrogen gas reduces the deposition rate due to nitride formations on the surface. The point “sputtering-depositing” shifts: in the case of Ar (from Ub=–350 V to Ub=–200...–300 V) when the RN increases from 0.002 Pa to 0.66 Pa, respectively. In the case of nitrogen, when PN increase from 0.02 Pa to 0.08 Pa, the point shifts from Ub=–400 V to Ub=–600 V (at a distance of 300 mm from the cathode to the sample).

Author Biographies

Hanna Postelnyk, National Technical University «Kharkiv Polytechnic Institute» Bagaliya str., 21, Kharkiv, Ukraine, 61002

Postgraduate student

Department of Materials Science

Sergey Knyazev, National Technical University «Kharkiv Polytechnic Institute» Bagaliya str., 21, Kharkiv, Ukraine, 61002

Master of industrial training

Department of Materials Science

Andrei Meylekhov, National Technical University «Kharkiv Polytechnic Institute» Bagaliya str., 21, Kharkiv, Ukraine, 61002

Postgraduate student

Department of Materials Science

Vyacheslav Stolbovoy, National Science Center "Kharkiv Institute of Physics and Technology" Akademichna str., 1, Kharkiv, Ukraine, 61108

PhD, Head of Laboratory

Laboratory of research and development intensive ion-plasma technologies

Dmitriy Kovteba, National Science Center "Kharkiv Institute of Physics and Technology" Akademichna str., 1, Kharkiv, Ukraine, 61108

Junior Researcher

References

  1. Sobol', O., Andreev, A., Grigoriev, S., Gorban', V., Volosova, S., Aleshin, S., Stolbovoy, V. (2011). Physical characteristics, structure and stress state of vacuum-arc TiN coating, deposition on the substrate when applying high-voltage pulse during the deposition. Problems of Atomic Science and Technology, 4, 174–177.
  2. Beresnev, V. M., Sobol’, O. V., Pogrebnjak, A. D., Turbin, P. V., Litovchenko, S. V. (2010). Thermal stability of the phase composition, structure, and stressed state of ion-plasma condensates in the Zr-Ti-Si-N system. Technical Physics, 55 (6), 871–873. doi: 10.1134/s1063784210060216
  3. Ulrich, S., Ziebert, C., Stuber, M., Nold, E., Holleck, H., Goken, M. et. al. (2004). Correlation between constitution, properties and machining performance of TiN/ZrN multilayers. Surface and Coatings Technology, 188-189, 331–337. doi: 10.1016/j.surfcoat.2004.08.056
  4. Xu, X. M., Wang, J., An, J., Zhao, Y., Zhang, Q. Y. (2007). Effect of modulation structure on the growth behavior and mechanical properties of TiN/ZrN multilayers. Surface and Coatings Technology, 201 (9-11), 5582–5586. doi: 10.1016/j.surfcoat.2006.07.132
  5. Koshy, R. A., Graham, M. E., Marks, L. D. (2007). Synthesis and characterization of CrN/Mo2N multilayers and phases of Molybdenum nitride. Surface and Coatings Technology, 202 (4-7), 1123–1128. doi: 10.1016/j.surfcoat.2007.07.090
  6. Kazmanli, M. K., Urgen, M., Cakir, A. F. (2003). Effect of nitrogen pressure, bias voltage and substrate temperature on the phase structure of Mo-N coatings produced by cathodic arc PVD. Surface and Coatings Technology, 167 (1), 77–82. doi: 10.1016/s0257-8972(02)00866-6
  7. Pogrebnyak, A. D., Sobol’, O. V., Beresnev, V. M., Turbin, P. V., Dub, S. N., Kirik, G. V., Dmitrenko, A. E. (2009). Features of the structural state and mechanical properties of ZrN and Zr(Ti)-Si-N coatings obtained by ion-plasma deposition technique. Technical Physics Letters, 35 (10), 925–928. doi: 10.1134/s1063785009100150
  8. Azarenkov, N., Sobol', O., Beresnev, V., Pogrebnjak, A., Kolesnikov, D., Turbin, P., Torjanik, I. (2013). Vakuumno-plazmennye pokrytija na osnove mnogojelementnyh nitridov. Metallofizika i novejshie tehnologii, 35 (8), 1061–1084.
  9. Pogrebnjak, A. D., Yakushchenko, I. V., Abadias, G., Chartier, P., Bondar, O. V., Beresnev, V. M. et. al. (2013). The effect of the deposition parameters of nitrides of high-entropy alloys (TiZrHfVNb)N on their structure, composition, mechanical and tribological properties. Journal of Superhard Materials, 35 (6), 356–368. doi: 10.3103/s106345761306004x
  10. Holmberg, K., Ronkainen, H., Laukkanen, A., Wallin, K. (2007). Friction and wear of coated surfaces – scales, modelling and simulation of tribomechanisms. Surface and Coatings Technology, 202 (4-7), 1034–1049. doi: 10.1016/j.surfcoat.2007.07.105
  11. Sobol', O. (2006). Structural Engineering Vacuum-plasma Coatings Interstitial Phases. Journal of Nano- and Electronic Physics, 8 (2), 02024-1–02024-7. doi: 10.21272/jnep.8(2).02024
  12. Azarenkov, N., Sobol', O., Pogrebnjak, A., Beresnev, V. (2011). Inzhenerija vakuumno-plazmennyh pokrytij. Kharkiv: HNU imeni V. N. Karazina, 344.
  13. Aksenov, I. (2005). Vakuumnaja duga v jerozionnyh istochnikah plazmy. Kharkiv: NNC HFTI, 212.
  14. Pogrebnjak, A. D., Beresnev, V. M., Bondar, O. V., Abadias, G., Chartier, P., Postol’nyi, B. A. et. al. (2014). The effect of nanolayer thickness on the structure and properties of multilayer TiN/MoN coatings. Technical Physics Letters, 40 (3), 215–218. doi: 10.1134/s1063785014030092
  15. Sobol’, O. V., Andreev, A. A., Grigoriev, S. N., Gorban’, V. F., Volosova, M. A., Aleshin, S. V., Stolbovoi, V. A. (2012). Effect of high-voltage pulses on the structure and properties of titanium nitride vacuum-arc coatings. Metal Science and Heat Treatment, 54 (3-4), 195–203. doi: 10.1007/s11041-012-9481-8
  16. Sobol’, O. V. (2007). Nanostructural ordering in W-Ti-B condensates. Physics of the Solid State, 49 (6), 1161–1167. doi: 10.1134/s1063783407060236
  17. Sobol’, O. V. (2016). The influence of nonstoichiometry on elastic characteristics of metastable β-WC1–x phase in ion plasma condensates. Technical Physics Letters, 42 (9), 909–911. doi: 10.1134/s1063785016090108
  18. Sobol, O. V., Grigoryev, O. N., Kunitsky, Y. A., Dub, S. N., Podtelezhnikov, A. A., Stetsenko, A. N. (2006). Peculiarities of structure state and mechanical characteristics in ion-plasma condensates of quasibinary system borides W2B5-TiB2. Science of Sintering, 38 (1), 63–72. doi: 10.2298/sos0601063s
  19. Aksenov, I., Aksenov, D., Belous, V. (2014). Tehnika osazhdenija vakuumno-dugovyh pokrytij. Kharkiv: NNC HFTI, 280.
  20. Belous, V., Vasyliev, V., Luchaninov, A., Marinin, V., Reshetnyak, E., Strel’nitskij, V. et. al. (2013). Cavitation and abrasion resistance of Ti-Al-Y-N coatings prepared by the PIII&D technique from filtered vacuum-arc plasma. Surface and Coatings Technology, 223, 68–74. doi: 10.1016/j.surfcoat.2013.02.031
  21. Andreev, A. A., Sablev, L. P., Grigorev, S. N. (2010). Vacuum-arc coating. Kharkiv: NNC KIPT, 317.

Downloads

Published

2017-02-20

How to Cite

Postelnyk, H., Knyazev, S., Meylekhov, A., Stolbovoy, V., & Kovteba, D. (2017). A study of an effect of the parameters of niobium-based ion cleaning of a surface on its structure and properties. Eastern-European Journal of Enterprise Technologies, 1(5 (85), 34–39. https://doi.org/10.15587/1729-4061.2017.91788