Formation of securities portfolio under conditions of uncertainty

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.92283

Keywords:

securities portfolio, fuzzy cost of assets, minimax model, probabilistic fractional-linear criterion

Abstract

We examined a problem on the formation of securities portfolio. A criterion for portfolio effectiveness is determined – a probability that the total portfolio profitability exceeds a threshold. In connection with real shortage of the volume of initial data, we substantiated the rejection of hypothesis about the normality of their distribution law and the problem is solved under assumption about the worst distribution density of these data. In this case, it is accepted that mathematical expectation and the dispersion of values for the cost of assets are the fuzzy numbers. The form of membership function of the fuzzy parameters in the problem is selected. We constructed an analytical expression to describe the criterion in the terms of fuzzy mathematics.

In this case, a problem on the maximization of fractional-quadratic functional with linear constraints is obtained. We devised a method for solving the obtained fuzzy problem of mathematical programming, which reduces this problem to the conventional problem of nonlinear programming. In order to solve this problem, it is proposed to employ the optimization method of zero order. It is demonstrated that the portfolio risk depends quadratically on the mathematical expectation of its profitability. Recommendations are given regarding the choice of numerical value for the mathematical expectation of portfolio profitability depending on the acceptable portfolio risk. 

Author Biographies

Oksana Sira, National Technical University «Kharkiv Polytechnic Institute» Bahalіya str., 21, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Computer Monitoring and logistics

Tetiana Katkova, Berdyansk University of Management and Business Svobody str., 117 a, Berdyansk, Ukraine, 71118

PhD, Associate Professor

Department of Information Systems and Technologies

References

  1. Gurin, L. S., Dymarskij, Ja. S., Merkulov, A. D. (1968). Zadachi i metody optimal'nogo raspredelenija resursov. Moscow: Sov. radio, 368.
  2. Larichev, O. I. (2002). Teorija i metody prinjatija reshenij. Moscow: Logos, 392.
  3. Bazaraa, M. S., Shetty, C. M. (1979). Nonhnear Programming: Theory and Algorithms. New York: Wiley, 560.
  4. Raskin, L. G. (1976). Analiz slozhnyh sistem i jelementy teorii upravlenija. Moscow: Sov. radio, 344.
  5. Karmanov, V. G. (1980). Matematicheskoe programmirovanie. Moscow: Gl. red. fiz.-mat. lit., 256.
  6. Himmelblau, D. (1972). Applied Nonlinear Programming. New York: McGraw-Hill, 416.
  7. Zangwill, W. I. (1969). Nonlinear Programmmg: A Unified Approach. PrenticeHall, Englewood Chffs, N. J., 356.
  8. Judin, D. B. (1974). Matematicheskie metody upravlenija v uslovijah nepolnoj informacii. Zadachi i metody stohasticheskogo programmirovanija. Moscow: Sov. radio, 392.
  9. Demuckij, V. P., Pignastyj, O. M. (2003). Teorija predprijatija. Ustojchivost' funkcionirovanija massovogo proizvodstva i prodvizhenija produkcii na rynok. Kharkiv: KhNU im. V. N. Karazina, 272.
  10. Demuckij, V. P., Pignastaja, V. S., Pignastyj, O. M. (2005). Stohasticheskoe opisanie jekonomiko-proizvodstvennyh sistem s massovym vypuskom produkcii. Doklady Nac. Akad. Nauk Ukrainy, 7, 66–71.
  11. Pignastyj, O. M. (2007). Stohasticheskaja teorija proizvodstvennyh sistem. Kharkiv: KhNU im. V. N. Karazina, 387.
  12. Raskin, L. G., Kirichenko, I. O., Seraja, O. V. (2013). Prikladnoe kontinual'noe linejnoe programmirovanie. Kharkiv, 293.
  13. Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: 10.1615/jautomatinfscien.v44.i7.40
  14. Raskin, L. G., Seraja, O. V. (2003). Formirovanie skaljarnogo kriterija predpochtenija po rezul'tatam poparnyh sravnenij ob’ektov. Vestnik NTU «KhPI», 63–68.
  15. Connor, G., Goldberg, L. R., Korajczyk, R. A. (2010). Portfolio Risk Analysis. Princeton University Press, 354. doi: 10.1515/9781400835294
  16. Otani, Y., Imai, J. (2013). Pricing Portfolio Credit Derivatives with Stochastic Recovery and Systematic Factor. IAENG International Journal of Applied Mathematics, 43 (4), 176–184.
  17. Read, C. (2012). The Portfolio Theorists: von Neumann, Savage, Arrow and Markowitz. Springer, 240. doi: 10.1057/9780230362307
  18. Bellman, R. E., Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17 (4), B–141–B–164. doi: 10.1287/mnsc.17.4.b141
  19. Negojce, K. (1981). Primenenie teorii sistem k problemam upravlenija. Moscow: MIR, 219.
  20. Orlovskij, S. A. (1981). Problemy prinjatija reshenij pri nechetkoj informacii. Moscow: Nauka, 264.
  21. Zajchenko, Ju. P. (1991). Issledovanie operacij. Nechetkaja optimizacija. Kyiv: Vishha shkola, 191.
  22. Raskin, L. G., Seraja, O. V. (2008). Nechetkaja matematika. Kharkiv: Parus, 352.
  23. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi: 10.15587/1729-4061.2016.81292
  24. Lukashin, Ju. P. (2003). Adaptivnye metody kratkosrochnogo prognozirovanija vremennyh rjadov. Moscow: Finansy i statistika, 416.
  25. Kostenko, Ju. T., Raskin, L. G. (1996). Prognozirovanie tehnicheskogo sostojanija sistem upravlenija. Kharkiv: Osnova, 303.
  26. Hank, D. Je. (2003). Biznes – prognozirovanie. Moscow: «Vil'jams», 656.
  27. Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11 (5), 341–356. doi: 10.1007/bf01001956
  28. Raskin, L., Sira, O. (2016). Fuzzy models of rough mathematics. Eastern-European Journal of Enterprise Technologies, 6 (4 (84)), 53–60. doi: 10.15587/1729-4061.2016.86739

Downloads

Published

2017-02-13

How to Cite

Sira, O., & Katkova, T. (2017). Formation of securities portfolio under conditions of uncertainty. Eastern-European Journal of Enterprise Technologies, 1(4 (85), 49–55. https://doi.org/10.15587/1729-4061.2017.92283

Issue

Section

Mathematics and Cybernetics - applied aspects