Development and analysis of mathematical models for the process of thermal conductivity for piecewise uniform elements of electronic systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.92551

Keywords:

thermal conductivity, isotropic piecewise uniform layer, a through foreign inclusion, thermal sensitivity, heat flow

Abstract

We examined linear and non-linear mathematical models for the thermal conductivity process in the elements of electronic systems, which are described by a layer and a piecewise uniform layer with a through foreign cylindrical inclusion, with a concentrated heat flow at one of their boundary surfaces. Classical methods cannot resolve boundary problems of mathematical physics, which correspond to these models, in a closed form. In this connection, thermophysical parameters for piecewise uniform media are described by using generalized functions as a single entity for the entire system. As a result of this approach, we obtain one equation of thermal conductivity with generalized derivatives for the entire system with boundary conditions at the boundary surfaces of inhomogeneous media. In the classic case, the process of thermal conductivity would be described by a system of equations on thermal conductivity for each of the elements of heterogeneous medium under conditions of perfect thermal contact at the conjugating surfaces of dissimilar elements and boundary conditions at the boundary surfaces of non-uniform media. For a case of nonlinear models, which are more accurate than the linear ones, one of the conditions of a perfect thermal contact, namely equality of temperatures at the conjugating surfaces of dissimilar elements of the structure, cannot be used in the process of linearization of nonlinear boundary problems that correspond to these models. In this regard, in the present study we propose approaches that make it possible to solve such type of boundary problems in mathematical physics.

Author Biographies

Vasily Havrysh, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Software 

Igor Ovchar, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankovsk, Ukraine, 76019

PhD, Associate Professor

Department of Mathematics

Jaroslav Baranetskyj, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Mathematics

Jaroslav Pelekh, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor, Senior Researcher

Department of Computational Mathematics and Programming

Paul Serduik, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Software Department

References

  1. Golicyna, E. V., Osipov, Ju. R. (2007). Kvazistacionarnaja trehmernaja zadacha teploprovodnosti vo vrashhajushhemsja sploshnom cilindre iz kompozicionnogo materiala s nelinejnymi granichnymi uslovijami. Konstrukcii iz kompozicionnyh materialov, 4, 47–58.
  2. Kudrjashov, N. A., Chmyhov, M. A. (2007). Priblizhennye reshenija pervoj i vtoroj kraevyh zadach nelinejnoj teploprovodnosti na polubeskonechnoj prjamoj. Inzhenernaja fizika, 3, 12–15.
  3. Kudinov, V. A., Averin, B. V., Stefanjuk, E. V., Nazarenko, S. A. (2006). Analiz nelinejnoj teploprovodnosti na osnove opredelenija fronta temperaturnogo vozmushhenija. Teplofizika vysokih temperatur, 44 (4), 577–585.
  4. Popovych, V. S., Ivankiv, K. S. (2002). Nelinijna zadacha teploprovidnosti dlja kuli z teploobminom. Visnyk L'viv un-tu. Ser. Prykl. matematyka ta informatyka, 5, 136–144.
  5. Savula, Ja. G., Djakonjuk, L. M. (2000). Doslidzhennja variacijnoi' zadachi teploprovidnosti u bagatosharovyh seredovyshhah z tonkymy vkljuchennjamy. Visnyk L'viv un-tu. Ser. Prykl. matematyka ta informatyka, 3, 125–130.
  6. Bayat, A., Moosavi, H., Bayat, Y. (2015). Thermo-mechanical analysis of functionally graded thick spheres with linearly time-dependent temperature. Scientia Iranica, 22 (5), 1801–1812.
  7. Mohazzab, A. H., Jabbari, M. (2011). Two-Dimensional Stresses in a Hollow FG Sphere with Heat Source. Advanced Materials Research, 264-265, 700–705. doi: 10.4028/www.scientific.net/amr.264-265.700
  8. Podstrigach, Ja. S., Lomakin, V. A., Koljano, Ju. M. (1984). Termouprugost' tel neodnorodnoj struktury. Moscow: Nauka, 368.
  9. Koljano, Ju. M. (1992). Metody teploprovodnosti i termouprugosti neodnorodnogo tela. Kyiv: Naukova dumka, 280.
  10. Korn, G., Korn, T. (1977). Spravochnik po matematike dlja nauchnyh rabotnikov i inzhenerov. Moscow: Nauka, 720.
  11. Gavrysh, V. I., Fedasjuk, D. V. (2012). Modeljuvannja temperaturnyh rezhymiv u kuskovo – odnoridnyh strukturah. Lviv: V-vo Nac. un-tu «L'vivs'ka politehnika», 176.
  12. Gavrysh, V. I. (2014). Chislenno – analiticheskoe reshenie nelinejnoj stacionarnoj zadachi teploprovodnosti dlja beskonechnoj termochuvstvitel'noj mnogoslojnoj plastiny. Jelektronnoe modelirovanie, 36 (3), 59–70.
  13. Gavrysh, V. I. (2013). Doslidzhennja temperaturnyh rezhymiv u termochutlyvij plastyni z chuzhoridnym naskriznym vkljuchennjam. Fizyko-matematychne modeljuvannja ta informacijni tehnologii', 18, 43–50.
  14. Gavrysh, V. I. (2015). Nelinijna krajova zadacha teploprovidnosti dlja sharuvatoi' plastyni z vkljuchennjam. Fizyko-himichna mehanika materialiv, 51 (3), 32–38.
  15. Lomakin, V. A. (1976). Teorija uprugosti neodnorodnyh tel. Moscow: Izd-vo Mosk. un- ta, 376.
  16. Berman, R. (1979). Teploprovodnost' tverdyh tel. Moscow: Mir, 288.

Downloads

Published

2017-02-20

How to Cite

Havrysh, V., Ovchar, I., Baranetskyj, J., Pelekh, J., & Serduik, P. (2017). Development and analysis of mathematical models for the process of thermal conductivity for piecewise uniform elements of electronic systems. Eastern-European Journal of Enterprise Technologies, 1(5 (85), 23–33. https://doi.org/10.15587/1729-4061.2017.92551