Optimization of the structure of wind power station with the use of the branch and bound method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.96769

Keywords:

wind power station, problem of integer programming, branch and bound method

Abstract

The model of an optimization problem, which allows us to determine the optimal structure of a wind power system, was stated. The constructed optimization problem includes the objective function, describing the dependence of efficiency of a wind power system on its structure, and constraints that imply integer design parameters and demand for providing the assigned capacity of the WPS. In the process of solving the stated problem of integer programming, we determined the rule of division of a set of solutions into subsets and the computational criterion of assessment of the upper bound of each subsets, which made it possible to apply the branch and bound method, which allows us to find the optimal solution at minimum computational costs.The software system for solving problems of integer programming with the use of the branch and bound method was designed and implemented. The structure of a software system, based on a modular principle, which provides quick modification and improvement of the application in the process of its development, was built.

In the process of implementing a software system, the dataware was developed, based on the doubly connected list data structures and allowing us to process efficiently large arrays of information. For effective organization of data exchange with existing software systems, the XML format was used. The results of application of the developed software system with the use of the branch and bound method to determine the optimal structure for a wind power system were presented.

Author Biographies

Taras Teslyuk, National University "Lviv Polytechnic" S. Bandery str., 12, Lviv, Ukraine, 79013

Postgraduate student

Department of Automated Control Systems

Ivan Tsmots, National University "Lviv Polytechnic" S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Automated Control Systems

Vasyl Teslyuk, National University "Lviv Polytechnic" S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Automated Control Systems

Mykola Medykovskyy, National University "Lviv Polytechnic" S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Automated Control Systems

References

  1. Perfilova, A. (2015). Otsenka obosnovannosti tselevyh parametrov “energeticheskoy strategii Ukrainy na period do 2035 hoda” na osnove kriteria sushchestvennosti. Problemy ekonomiki, 3, 65–70.
  2. Geletykha, G., Zheleznaya, T. (2006). Analiz osnovnyh polozheniy "Energeticheskoy strategii Ukraine na period do 2030 goda". Promyshlennaia teplotehnika, 28 (5), 82–92.
  3. Ivanov, N., Bespalov, V., Lopatin, N. (2009). Optimizatsia rezhimov raboty oborudovania teplovyh elektrostantsiy. Materialy 10 mezhdunarodnoy Konferetsii «Sovremennye tehniki i tehnologii». Tomsk, 41–44.
  4. Sydor, A. R., Teslyuk, V. M., Denysyuk, P. Y. (2014). Recurrent expressions for reliability indicators of compound electropower systems. Technical Electrodynamics, 4, 47–49.
  5. Ivanov, N., Bespalov, V., Lopatin, N. (2008). Matematicheskaya model optimizatsii kratkosrochnyh rezhimov raboty TETs v usloviah konkurentnoho rynka. Izvestia Tomskoho politehnicheskoho universiteta, 313 (4), 37–40.
  6. Kuznetsov, M. (2014). Osoblyvosti modeliuvannia potuzhnosti vitrovyh elektrostantsiy, roztashovanyk na obmezheniy terytorii. Vidnovliuvana energetyka, 4, 57–61.
  7. Yu, P., Zhou, W., Zhao, Y., Sun, H., Liu, J., Liu, Y. (2012). A New Method for Balancing the Fluctuation of Wind Power by a Hybrid Energy Storage System. Information Technology Journal, 11 (1), 58–66. doi: 10.3923/itj.2012.58.66
  8. Ivanov, N., Bespalov, V., Lopatin, N. (2008). Programnyy komplex dlia optimizatsii rezhimov raboty teplovyh elektrostantsiy i effektivnost ego primenenia. Izvestia Tomskogo politehnicheskogo universiteta, 313 (4), 40–44.
  9. Koutroulis, E., Kolokotsa, D., Potirakis, A., Kalaitzakis, K. (2006). Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Solar Energy, 80 (9), 1072–1088. doi: 10.1016/j.solener.2005.11.002
  10. Medykovskyy, M. О., Teslyuk, V. M., Shunevych, O. B. (2014). The optimization of the wind turbine’s structure using the method of dynamic programming. Аctual Problems of Economics, 2 (152), 508–515.
  11. Medykovskyi, M. О., Teslyuk, V. M., Shunevych, O. B. (2014). The use of dynamic programming for the problem of the uniform use of wind plants. Technical Electrodynamics, 4, 135–137.
  12. Yang, H., Zhou, W., Lu, L., Fang, Z. (2008). Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm. Solar Energy, 82 (4), 354–367. doi: 10.1016/j.solener.2007.08.005
  13. Hong, Y.-Y., Lian, R.-C. (2012). Optimal Sizing of Hybrid Wind/PV/Diesel Generation in a Stand-Alone Power System Using Markov-Based Genetic Algorithm. IEEE Transactions on Power Delivery, 27 (2), 640–647. doi: 10.1109/tpwrd.2011.2177102
  14. Medykovskyy, M., Shunevych, O. (2011). Doslidzhennia efektyvnosti metodiv vyznachennia vagovyh koefitsientiv vazhlyvosti. Visnyk Khmelnytskogo natsionalnogo universytetu, 5, 176–182.
  15. Denysyuk, P., Teslyuk, V., AlOmari, T. A., Teslyuk, T. (2009). Development and study of subsystem for solution of tasks of multicriterial optimization. Proceedings of the 5th International Conference on Perspective Technologies and Methods in MEMS Design, MEMSTECH, 166–167.
  16. Taha, Kh. (2016). Vvedenie v issledovanie operatsiy. Мoscow: Viliams, 912.
  17. Ma, X., Gao, Y., Liu, X. (2016). A new branch and bound algorithm for integer quadratic programming problems. J. Nonlinear Sci., 1153–1164.
  18. Ponomarenko, V., Golubnychyy, D., Tretiak, V. (2005). Tsilochyselne programuvannia v ekonomitsi. Kharkiv: Vyd. KhNEU, 204.
  19. Golubeva, Y., Orlov, Y., Posypkin, M. (2016). A tool for simulating parallel branch-and-bound methods. Open Engineering, 6 (1). doi: 10.1515/eng-2016-0031
  20. Kormen, T., Leyzerson, Ch., Rivest, R., Shtain, K. (2012). Algoritmy. Postroenie i analiz. Moscow: Izdatelskiy dom "Viliams", 1296.

Downloads

Published

2017-04-29

How to Cite

Teslyuk, T., Tsmots, I., Teslyuk, V., & Medykovskyy, M. (2017). Optimization of the structure of wind power station with the use of the branch and bound method. Eastern-European Journal of Enterprise Technologies, 2(8 (86), 4–9. https://doi.org/10.15587/1729-4061.2017.96769

Issue

Section

Energy-saving technologies and equipment