Examining the temperature fields in flat piecewise- uniform structures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.97272

Keywords:

thermal conductivity, temperature field, a foreign through-inclusion, thermosensitive system, heat flux

Abstract

The paper considers linear and non-linear mathematical models for the thermal conductivity process in designs that are described by a plate and a layered plate with a foreign parallelepiped-shaped through-inclusion on whose one boundary surface heat flux is concentrated. Classic methods do not make it possible to solve the boundary problems of mathematical physics that match these models in a closed form. Given this, in the present work we propose an approach that is based on the fact that the thermal-physical parameters for the piecewise uniform environments are described using generalized functions as a single entity for the whole system. As a result, we obtained one equation of thermal conductivity with generalized derivatives for the entire system with boundary conditions at the boundary surfaces of non-uniform environments. In a classic case, the process of thermal conductivity would be described by a system of equations of thermal conductivity for each of the elements of a non-uniform environment with conditions for an ideal thermal contact at the interface surfaces of non-uniform elements and boundary conditions on boundary surfaces of non-uniform environments. For the case of non-linear models, the condition of temperature equality at the interface surfaces of non-uniform elements of the designs is not applicable. With regard to the aforementioned, this work proposed yet another approach, which is in the introduction of linearizing functions that make it possible to linearize corresponding nonlinear boundary problems for these designs, which, as a result, allows us to solve this kind of boundary problems in mathematical physics. We received calculation formulas for determining the temperature field in the examined thermosensitive systems in the case of linearly variable coefficient of thermal conductivity of design materials. By using the obtained analytical-numerical solutions of linear and nonlinear boundary problems for the given piecewise-uniform structures, we created computational programs that make it possible to obtain the numerical values of temperature distribution and analyze the structures in terms of thermostability. As a result, it becomes possible to improve thermal stability of these designs and thus protect them from overheating, which can cause destruction of separate elements and even entire systems.

Author Biographies

Vasyl Havrysh, Lviv Polytechnic National University Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Software

Halyna Ivasyk, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD

Department of Mathematics

Lubov Kolyasa, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD

Department of Mathematics

Igor Ovchar, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor

Department of Mathematics

Yaroslav Pelekh, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Computational Mathematics and Programming

Orest Bilas, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Software 

References

  1. Golicyna, E. V., Osipov, Ju. R. (2007). Kvazistacionarnaja trehmernaja zadacha teploprovodnosti vo vrashhajushhemsja sploshnom cilindre iz kompozicionnogo materiala s nelinejnymi granichnymi uslovijami. Konstrukcii iz kompozicionnyh materialov, 4, 47–58.
  2. Kudryashov, N. A., Chmyhov, V. A. (2007). Priblizhennye resheniya odnomernyh zadach nelinejnoj teploprovodnosti pri zadannom potoke. Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki, 47 (1), 110–120.
  3. Kudinov, V. A., Averin, B. V., Stefanjuk, E. V., Nazarenko, S. A. (2006). Analiz nelinejnoj teploprovodnosti na osnove opredelenija fronta temperaturnogo vozmushhenija. Teplofizika vysokih temperatur, 44 (4), 577–585.
  4. Carpinteri, A., Paggi, M. (2008). Thermo-elastic mismatch in nonhomogeneous beams. Journal of Engineering Mathematics, 61 (2-4), 371–384. doi: 10.1007/s10665-008-9212-8
  5. Xu, Y., Tu, D. (2009). Analysis of Steady Thermal Stress in a ZrO2/FGM/Ti-6Al-4V Composite ECBF Plate with Temperature-Dependent Material Properties by NFEM. 2009 WASE International Conference on Information Engineering. doi: 10.1109/icie.2009.73
  6. Ghannad, M., Yaghoobi, M. P. (2015). A thermoelasticity solution for thick cylinders subjected to thermo-mechanical loads under various boundary conditions. International Journal of Advanced Design & Manufacturing Technology, 8 (4), 1–12.
  7. Jabbari, M., Karampour, S., Eslami, M. R. (2011). Radially Symmetric Steady State Thermal and Mechanical Stresses of a Poro FGM Hollow Sphere. ISRN Mechanical Engineering, 2011, 1–7. doi: 10.5402/2011/305402
  8. Bayat, A., Moosavi, H., Bayat, Y. (2015). Thermo-mechanical analysis of functionally graded thick spheres with linearly time-dependent temperature. Scientia Iranica, 22 (5), 1801–1812.
  9. Mohazzab, A. H., Jabbari, M. (2011). Two-Dimensional Stresses in a Hollow FG Sphere with Heat Source. Advanced Materials Research, 264-265, 700–705. doi: 10.4028/www.scientific.net/amr.264-265.700
  10. Podstrigach, Ja. S., Lomakin, V. A., Koljano, Ju. M. (1984). Termouprugost' tel neodnorodnoj struktury. Moscow: Nauka, 368.
  11. Koljano, Ju. M. (1992). Metody teploprovodnosti i termouprugosti neodnorodnogo tela. Kyiv: Naukova dumka, 280.
  12. Korn, G., Korn, T. (1977). Spravochnik po matematike dlja nauchnyh rabotnikov i inzhenerov. Moscow: Nauka, 720.
  13. Gavrysh, V. I., Fedasjuk, D. V. (2012). Modeljuvannja temperaturnyh rezhymiv u kuskovo – odnoridnyh strukturah. Lviv: V-vo Nac. un-tu «L'vivs'ka politehnika», 176.
  14. Gavrysh, V. I. (2014). Chislenno – analiticheskoe reshenie nelinejnoj stacionarnoj zadachi teploprovodnosti dlja beskonechnoj termochuvstvitel'noj mnogoslojnoj plastiny. Elektronnoe modelirovanie, 36 (3), 59–70.
  15. Gavrysh, V. I. (2013). Doslidzhennja temperaturnyh rezhymiv u termochutlyvij plastyni z chuzhoridnym naskriznym vkljuchennjam. Fizyko-matematychne modeljuvannja ta informacijni tehnologii', 18, 43–50.
  16. Gavrysh, V. I. (2015). Nelinijna krajova zadacha teploprovidnosti dlja sharuvatoi' plastyni z vkljuchennjam. Fizyko- himichna mehanika materialiv, 51 (3), 32–38.
  17. Lomakin, V. A. (1976). Teorija uprugosti neodnorodnyh tel. Moscow: Izd- vo Mosk. un- ta, 376.
  18. Berman, R. (1979). Teploprovodnost' tverdyh tel. Moscow: Mir, 288.

Downloads

Published

2017-04-26

How to Cite

Havrysh, V., Ivasyk, H., Kolyasa, L., Ovchar, I., Pelekh, Y., & Bilas, O. (2017). Examining the temperature fields in flat piecewise- uniform structures. Eastern-European Journal of Enterprise Technologies, 2(5 (86), 23–32. https://doi.org/10.15587/1729-4061.2017.97272

Issue

Section

Applied physics