Development of computer–integrated systems for the automation of technological process of associated gas processing

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.99060

Keywords:

distillation, methane, propane-butane, automatic control system, computer-integrated automation

Abstract

A procedure for constructing a computer-integrated system for automating the technological process of processing associated petroleum gas has been developed. Development of the technological process according to the proposed procedure makes it possible to identify and overcome the difficulties encountered in solving the problems of technological calculation and synthesis of an automatic control system. Difficulties are exacerbated by the influence of heavy disturbances in the flow and concentration of associated petroleum gas.

Using the procedure, a technological process for processing associated petroleum gases along with an automatic control system has been developed. The technological process was adapted to use in medium oil fields, such as Ukrainian, which are characterized by low bulks and territorial dispersion. This makes it economically inexpedient to design large gas processing plants operating at a fixed load and gas concentration, which are common in the main oil-producing countries. Therefore, the technological process ensures production of methane and propane-butane of a required quality in the conditions of deviation of composition, concentration and flow rate of the streams incoming from wells in a wide range.

The automatic process control system has a two-level structure. The upper level is used to ensure operability at heavy disturbances, which is achieved by changing the operation conditions. The lower level ensures stabilization of the process for small disturbances. Two alternative implementations of the automatic control system based on PID controllers and linear quadratic regulator (LQR) were considered. The results of simulation made in HYSYS program show advantages of the cascade system of the proposed structure based on PID controllers. The control system ensures operability in conditions of deviation of gas flow by ±30 %, when the mole fraction of the gas components alters by 30–50 % and when the gas temperature deviates by ±15 °C from the values of working conditions

Author Biographies

Andrii Stopakevych, Odessa national academy of telecommunications named after O. S. Popov Kuznechna str., 1, Odessa, Ukraine, 65029

PhD, Associate Professor

Department of computer-integrated technological processes and industries

Oleksii Stopakevych, Odessa National Polytechnic University Shevchenko ave., 1, Odessa, Ukraine, 65044

PhD, Associate Professor

Department of automation of power processes 

Anatolii Tigariev, Odessa national academy of telecommunications named after O. S. Popov Kuznechna str., 1, Odessa, Ukraine, 65029

PhD, Associate Professor

Department of computer-integrated technological processes and industries

References

  1. Kovalenko, D. R. (2009). Hosudarstvennoe rehulyrovanye dobychy nefty y haza v Norvehyy. Trudy ynstytuta hosudarstva y prava RAN, 4, 274–285.
  2. Provornii, I. A. (2013). Sovremennoe sostoianye y kliuchevie problemi utylyzatsyy poputnoho neftianoho haza v Rossyy. Ynterekspo Heo-Sybyr, 3 (1), 59–63.
  3. Lukyn, A. E. (2014). Uhlevodorodnii potentsyal bolshykh hlubyn y perspektyv eho osvoenyia v Ukrayne. Heofyzycheskyi zhurnal, 36 (4), 3–23.
  4. Lymarenko, O. M., Khalitova, L. A. (2014). Ways to improve the use of natural gas in Ukraine. Technology audit and production reserves, 2 (1 (16)), 21–26. doi: 10.15587/2312-8372.2014.23428
  5. Khan, M. I. (2017). Falling oil prices: Causes, consequences and policy implications. Journal of Petroleum Science and Engineering, 149, 409–427. doi: 10.1016/j.petrol.2016.10.048
  6. Mariano, M. M. (Ed.) (2015). Introduction to software for chemical engineers. Boca Raton, FL, USA: CRC Press, 603.
  7. Pastushenko, V. S., Stopakevych, A. A., Stopakevych, A. A. (2016). Ynformatsyonno-vichyslytelnaia systema proektyrovanyia tekhnolohycheskoho protsessa utylyzatsyy uhlekysloho haza v metanol y systemi eho avtomatyzatsyy. Vestnyk KhNU, 243 (6), 226–230.
  8. Roy, P. S., Amin, M. R. (2011). Aspen-HYSYS Simulation of Natural Gas Processing Plant. Journal of Chemical Engineering, 26 (1), 62–65. doi: 10.3329/jce.v26i1.10186
  9. Ramzan, N., Naveed, S., Tahir, F. M. (2013). Simulation of natural gas processing plant for bumpless shift. NFC-IEFR Journal of Engineering & Scientific Research, 1, 151–156.
  10. Bhran, A. A. E.-K., Hassanean, M. H., Helal, M. G. (2016). Maximization of natural gas liquids production from an existing gas plant. Egyptian Journal of Petroleum, 25 (3), 333–341. doi: 10.1016/j.ejpe.2015.08.003
  11. Rao, K. N. M. (2015). HYSYS and Aspen Plus in Process Design: A Practical Approach. FRG: Lambert Academic Publishing, 380.
  12. Kooijman, H. A., Tayor, R. (2000). The ChemSep book. Norderstedt: Books on Demand, 541.
  13. Stopakevych, A. O. (2015). Razrabotka modely y prohrammnikh sredstv dlia sozdanyia robastnoi sistemy upravlenyia teploobmennykom. Avtomatyzatsiia tekhnolohichnykh i biznes-protsesiv, 7 (3), 51–60.
  14. Al-Malah, K. (2014). MATLAB Numerical Methods with Chemical Engineering Applications. USA, N.Y.: McGraw Hill Professional, 419.
  15. Luyben, W. L. (2013). Distillation design and control using Aspen simulation. New York and Hoboken, NJ: AIChE and John Wiley & Sons, Inc., 510.
  16. Cantrell, J. G., Elliott, T. R., Luyben, W. L. (1995). Effect of Feed Characteristics on the Controllability of Binary Distillation Columns. Industrial & Engineering Chemistry Research, 34 (9), 3027–3036. doi: 10.1021/ie00048a014
  17. Luyben, W. L. (Ed.) (1992). Practical distillation control. N.Y.: Van Nostrand Reihold, 560. doi: 10.1007/978-1-4757-0277-4
  18. Skogestad, S. (2007). The Dos and Don’ts of Distillation Column Control. Chemical Engineering Research and Design, 85 (1), 13–23. doi: 10.1205/cherd06133
  19. Rueda, L., Edgar, T., Eldridge, R. (2004). On-line parameter estimation and control for a pilot scale distillation column. AIChE annual meeting, 3–17.
  20. Rueda, L. (2005). Modeling and control of multicomponent distillation systems separating highly non-ideal mixtures. Austin,TX: UT, 184.
  21. Berge, J. (2005). Software for Automation: Architecture, Integration, and Security. USA, NC, Chapei Hill: ISA, 325.
  22. Stopakevich, A. A. (2013). Sistemnyj analiz i teoriya slozhnyh sistem. Odessa: Astroprint, 350.
  23. Stopakevich, A. A., Stopakevich, A. A. (2016). Design of robust controllers for plants with large dead time. Eastern-European Journal of Enterprise Technologies, 1 (2 (79)), 48–56. doi: 10.15587/1729-4061.2016.59107
  24. Stopakevich, A. A. (2015). Robust control system design of crude oil atmospheric distillation column. Eastern-European Journal of Enterprise Technologies, 5 (2 (77)), 49–57. doi: 10.15587/1729-4061.2015.50964
  25. Leont'ev, V. S., Sharikov, Yu. V. (2012). Metodologiya modernizacii i tekhnicheskogo perevooruzheniya rektifikacionnyh kompleksov neftekhimicheskih predpriyatij. Neftegazovoe delo, 1, 187–199.
  26. Szabo, L., Nemeth, S., Szeifert, F. (2012). Three level control of a distillation column. Engineering, 04 (10), 675–681. doi: 10.4236/eng.2012.410086
  27. Stopakevich, A. A., Stopakevich, A. A. (2015). Sintez i issledovanie cifrovyh sistem supervizornogo upravleniya kolonnoj rektifikacii nefti. Avtomatizaciya tekhnologicheskih i biznes – processov, 7 (4), 24–33.
  28. Mehrpooya, M., Hejazi, S. (2015). Design and Implementation of Optimized Fuzzy Logic Controller for a Nonlinear Dynamic Industrial Plant Using Hysys and Matlab Simulation Packages. Industrial & Engineering Chemistry Research, 54 (44), 11097–11105. doi: 10.1021/acs.iecr.5b02076

Downloads

Published

2017-06-30

How to Cite

Stopakevych, A., Stopakevych, O., & Tigariev, A. (2017). Development of computer–integrated systems for the automation of technological process of associated gas processing. Eastern-European Journal of Enterprise Technologies, 3(2 (87), 55–63. https://doi.org/10.15587/1729-4061.2017.99060