Improvement of technology for management of freight rolling stock on railway transport

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.99185

Keywords:

railway transport, artificial neural networks, irregularity factor, management of transportation

Abstract

We performed a statistical analysis of the time series of the volumes of cargo transportation. Studies have shown sufficiently high accuracy of prediction relative to the actual values of a railway transport system based on the mathematical apparatus of artificial neural network. The experiment revealed that the mean absolute percentage error for the volumes of transportation of grain and the products of flour mills amounted to 5.56 %. Given that railway transport is a fairly inert system, indicator of 5.56 % is sufficient for management decision making. By having predicted the level of cargo transportation, we determined the required number of wagons of a particular type, which would conform to the conditions of transportation of this particular cargo.

The optimal technology of organization of railway wagon flows implies minimization of operational costs for the transportation of cargo. In order to find the best variant to move the wagons, we proposed to take into account irregularity factor, or seasonality. The application on the railway network of the result of solution of the proposed model enables the dispatcher, the one who handles wagons, to make rational management decisions. Such technology makes it possible to take both long-term and operational decisions directly in the system of organization of railway wagon flows.

To automate management decision-making by operational personnel of railway transport, we simulated organization of wagon flows using the software. The simulation was carried out on a virtual polygon of railways. The procedure for obtaining rational decisions when managing freight rolling stock is universal and makes it possible to perform calculations for polygons of any size and at arbitrary time of planning

Author Biographies

Tetiana Butko, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

Doctor of Technical Sciences, Professor

Department of management of operational work

Svіtlana Prodashchuk, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of manage freight and commercial work

 

Ganna Bogomazova, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

Assistant

Department of manage freight and commercial work

 

Ganna Shelekhan, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

Assistant

Department of railway stations and junctions

Mikola Prodashchuk, V. N. Karazin Kharkiv National University Svobody sq., 4, Kharkiv, Ukraine, 61022

Department of Theoretical and Applied Informatics

Roman Purii, Structural department "Rivnenska administrtion of rail transportation" Regional Branch "Lviv railway" Pryvokzalna str., 72, Senkevychivka, Volyn region, Ukraine, 45750

Yardmaster

Senkevychivka station 

References

  1. Vantazhni perevezennia u 2016 rotsi. Available at: http://www.ukrstat.gov.ua/operativ/operativ2016/tr/vp/vp_u/vp1216_u.htm
  2. Prodashchuk, S. M., Bogomazova, G. Ye., Purii, R. A. (2016). Nova kontseptsiia taryfnoi polityky dlia vnutrishnikh zaliznychnykh vantazhnykh perevezen. Zbirnyk naukovykh prats Ukrainskoho derzhavnoho universytetu zaliznychnoho transportu, 164, 161–169.
  3. Chuchueva, I. A. (2010). Prognozirovanie vremennyih ryadov pri pomoschi modeli ekstrapolyatsii po vyiborke maksimalnogo podobiya. Nauka i sovremennost, 1-2, 187–192.
  4. Pradhan, R. P., Kumar, R. (2010). Forecasting Exchange Rate in India: An Application of Artificial Neural Network Model. Journal of Mathematics Research, 2 (4), 111–117. doi: 10.5539/jmr.v2n4p111
  5. Panchenko, S. V., Butko, T. V., Prohorchenko, A. V., Parhomenko, L. A. (2016). Formirovanie avtomatizirovannoy sistemyi rascheta propusknoy sposobnosti zheleznodorozhnyih setey dlya prodvizheniya gruzopotokov predpriyatiy gorno-metallurgicheskogo kompleksa. Naukoviy visnik natsionalnogo girnichogo universitetu, 2, 93–99.
  6. Kopytko, V. I., Datskiv, Yu. O. (2011). Prohnozuvannia obsiahiv vantazhnykh perevezen zaliznyts v rehionakh. Naukovyi visnyk NLTU Ukrainy, 21.10, 139–144.
  7. Gheyas, I., Smith, L. (2009). A Neural Network Approach to Time – Series Forecasting. Proceedings of the World Congress on Engineering, ІІ, 1292–1296.
  8. Wang, Y., Sun, H., Zhu, J., Zhu, B. (2015). Optimization Model and Algorithm Design for Airline Fleet Planning in a Multiairline Competitive Environment. Mathematical Problems in Engineering, 2015, 1–13. doi: 10.1155/2015/783917
  9. Najaf, P., Famili, S. (2013). Application of an Intelligent Fuzzy Regression Algorithm in Road Freight Transportation Modelling. Promet – Traffic&Transportation, 25 (4), 311–322. doi: 10.7307/ptt.v25i4.337
  10. Morariu, N., Iancu, E., Vlad, S. (2009). A Neural Network Model For Time – Series Forecasting. Romanian Journal of Economic Forecasting, 4, 213–223.
  11. Panchenko, S., Lavrukhin, О., Shapatina, O. (2017). Creating a qualimetric criterion for the generalized level of vehicle. Eastern-European Journal of Enterprise Technologies, 1 (3 (85)), 39–45. doi: 10.15587/1729-4061.2017.92203
  12. Butko, T., Prokhorov, V., Chekhunov, D. (2017). Devising a method for the automated calculation of train formation plan by employing genetic algorithms. Eastern-European Journal of Enterprise Technologies, 1 (3 (85)), 55–61. doi: 10.15587/1729-4061.2017.93276
  13. Xie, M.-Q., Li, X.-M., Zhou, W.-L., Fu, Y.-B. (2014). Forecasting the Short-Term Passenger Flow on High-Speed Railway with Neural Networks. Computational Intelligence and Neuroscience, 2014, 1–8. doi: 10.1155/2014/375487
  14. Tortum, A., Yayla, N., Gokdag, M. (2009). The Modelling of Mode Choices of Intercity Freight Transportation with the Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System. Expert Systems with Applications, 36 (3), 6199–6217. doi: 10.1016/j.eswa.2008.07.032
  15. Borovikov, V. P. (2001). Programma STATISTICA dlya studentov i inzhenerov. Мoscow: Goryachaya liniya – Telekom, 301.
  16. Borovikov, V. P., Ivchenko, G. I. (2000). Prognozirovanie v sisteme Statistica v srede Windows. Osnovyi teorii i intensivnaya praktika na kompyutere. Мoscow: Finansyi i statistika, 283.
  17. Vidpravlennya vantazhiv zaliznychnym transportom u sichni-veresni 2016 roku. Available at: http://www.ukrstat.gov.ua/operativ/operativ2016/tr/opr/opr_u/opr0916_u.htm
  18. Kruglov, V. V., Borisov, V. V. (2002). Iskusstvennyie neyronnyie seti. Teoriya i praktika. Мoscow: Goryachaya liniya – Telekom, 382.
  19. Haykin, S. (2006). Neyronnyie seti. Мoscow: OOO «I. D. Vilyams», 1104.

Downloads

Published

2017-06-30

How to Cite

Butko, T., Prodashchuk, S., Bogomazova, G., Shelekhan, G., Prodashchuk, M., & Purii, R. (2017). Improvement of technology for management of freight rolling stock on railway transport. Eastern-European Journal of Enterprise Technologies, 3(3 (87), 4–11. https://doi.org/10.15587/1729-4061.2017.99185

Issue

Section

Control processes