Construction of a numerical method for finding the zeros of both smooth and nonsmooth functions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.99273

Keywords:

minorant of a function, zero of a function, Chebyshev polynomial, Newton's diagram, smooth and nonsmooth function

Abstract

Here we report building a numerical method for finding the zeros of a function of one real variable using the apparatus of nonclassical Newton’s minorants and diagrams of functions', given in the tabular form. The examples of the search for zeros of functions are given.

A problem on finding the roots of equations belongs to important problems of applied mathematics. Classical methods of finding the zeroes of functions require first to isolate the roots and then to find them. In order to find a separate root with a given accuracy, it is necessary to choose one of the points in the vicinity that contains the root as the initial approximation and to employ an appropriate iterative process.

The numerical method constructed does not require additional information about the location of roots and has many advantages over other methods for finding the zeros of functions, in particular: simplicity and visual representation of the method. Because of this, it can gain a widespread application in many areas, such as physics, mechanics, and natural sciences. By using the method built, it is possible to find the roots in a linear time, which is rather fast. The practical value of a numerical method is largely determined by the speed of obtaining the solution. 

Author Biographies

Roman Bihun, Ivan Franko National University of Lviv Universytetska str., 1, Lviv, Ukraine, 79000

Postgraduate student

Department of Mathematical modeling of socio-economic processes

Gregoriy Tsehelyk, Ivan Franko National University of Lviv Universytetska str., 1, Lviv, Ukraine, 79000

Doctor of Physical and Mathematical Sciences, Professor, Head of Department

Department of Mathematical modeling of socio-economic processes

References

  1. Berezyn, Y., Zhydkov, N. (1996). Metody vychyslenyi. Vol. 1. Мoscow: Nauka, 464.
  2. Tsigaridas, E. P., Emiris, I. Z. (2006). Univariate Polynomial Real Root Isolation: Continued Fractions Revisited. Lecture Notes in Computer Science, 817–828. doi: 10.1007/11841036_72
  3. Suli, E., Mayers, D. F. (2003). An Introduction to Numerical Analysis. Cambridge University Press, 435. doi: 10.1017/cbo9780511801181
  4. Grau, M., Diaz-Barrero, J. L. (2006). An improvement to Ostrowski root-finding method. Applied Mathematics and Computation, 173 (1), 450–456. doi: 10.1016/j.amc.2005.04.043
  5. Abdelhafid, S. (2016). A fourth order method for finding a simple root of univariate function. Boletim da Sociedade Paranaense de Matematica, 34 (2), 197. doi: 10.5269/bspm.v34i2.24763
  6. Ozyapici, A., Sensoy, Z. B., Karanfiller, T. (2016). Effective Root-Finding Methods for Nonlinear Equations Based on Multiplicative Calculi. Journal of Mathematics, 2016, 1–7. doi: 10.1155/2016/8174610
  7. Chen, X.-D., Shi, J., Ma, W. (2017). A fast and robust method for computing real roots of nonlinear equations. Applied Mathematics Letters, 68, 27–32. doi: 10.1016/j.aml.2016.12.013
  8. Tsehelyk, G. (2013). Aparat neklasychnykh mazhorant i diahram Niutona funktsii, zadanykh tablychno, ta yoho vykorystannia v chyselnomu analizi. Lviv: LNU imeni Ivana Franka, 190.
  9. Bihun, R. R., Tsehelyk, G. G. (2014). Device of non-classical Newton’s minorant of functions of two real table-like variables and its application in numerical analysis. International Journal of Information and Communication Technology Research, 4 (7), 284–287.
  10. Bihun, R. R., Tsehelyk, G. G. (2015). Numerical Method for Finding All Points of Extremum of Random as Smooth and Non-Smooth Functions of One Variable. Global Journal of Science Frontier Research: F Mathematics and Decision Sciences, 15 (2), 87–93.
  11. Kostovskyi, A. (1967). Lokalyzatsyia po moduliam nulei riada Lorana y eho proyzvodnykh. Lviv, 208.
  12. Kardash, A. I., Chulyk, I. I. (1972). Doslidzhennia hranychnykh vlastyvostei mazhoranty i diahramy Niutona funktsii dvokh kompleksnykh zminnykh. Dop. AN URSR. Ser. A, 4, 316–319.
  13. Kardash, A. I., Chulyk, I. I. (1972). Ob oblasty skhodymosty riada Dyrykhle funktsyy dvukh kompleksnykh peremennykh y eho mazhoranty Niutona. Dokl. AN SSSR. Ser. A, 206 (4), 804–807.
  14. Kardash, A. I., Chulyk, I. I. (1972). Doslidzhennia hranytsi oblasti zbizhnosti stepenevykh riadiv funktsii dvokh kompleksnykh zminnykh. Dop. AN URSR. Ser. A, 5, 411–414.

Downloads

Published

2017-04-24

How to Cite

Bihun, R., & Tsehelyk, G. (2017). Construction of a numerical method for finding the zeros of both smooth and nonsmooth functions. Eastern-European Journal of Enterprise Technologies, 2(4 (86), 58–64. https://doi.org/10.15587/1729-4061.2017.99273

Issue

Section

Mathematics and Cybernetics - applied aspects