Development of a combined technology for hardening the surface layer of steel 38Cr2MoAl

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.100014

Keywords:

structural steel, surface hardening, combined treatment, laser treatment, nitriding, layer thickness, hardness

Abstract

Development of new combined strengthening technologies for treatment of steel surface layer is a topical issue. Influence of conditions of combined hardening treatment on variation of properties of the surface layer of 38Cr2MoAl steel was studied. Experimental data have shown that thickness of the hardened layer of 38Cr2MoAl steel, depending on the process conditions of combined treatment, varied in the range 0.18 to 0.69 mm with the surface hardness being 10.5–12.5 GPa. Mathematical models of the hardened layer thickness and surface hardness were obtained depending on variation of velocity of the laser beam travel and duration of nitriding of steel following the combined treatment. In their structure, the models are regression equations. These regularities have practical technological significance and ensure prediction of values of the hardened layer thickness and surface hardness. Nomograms of simultaneous influence of velocity of the laser beam travel and duration of nitriding on thickness of the hardened steel layer and surface hardness were constructed. Nomograms make it possible to determine concrete conditions of hardening processing, starting from specified thickness of the hardened layer or the surface hardness of 38Cr2MoAl steel, respectively and also to solve inverse problems. This method is suitable for hardening hard-to-reach part sectios and local contact areas.

Author Biographies

Alaa Fadhil І Idan, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkіv, Ukraine, 61002

Postgraduate student

Department of Foundry production

Oleg Akimov, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkіv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Foundry production

Kateryna Kostyk, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkіv, Ukraine, 61002

PhD, Associate Professor

Department of Foundry production

References

  1. Bataev, I. A., Golkovskii, M. G., Bataev, A. A., Losinskaya, A. A., Dostovalov, R. A., Popelyukh, A. I., Drobyaz, E. A. (2014). Surface hardening of steels with carbon by non-vacuum electron-beam processing. Surface and Coatings Technology, 242, 164–169. doi: 10.1016/j.surfcoat.2014.01.038
  2. Kivak, T. (2014). Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement, 50, 19–28. doi: 10.1016/j.measurement.2013.12.017
  3. Lee, K.-H., Choi, S.-W., Suh, J., Kang, C.-Y. (2016). Effect of laser power and powder feeding on the microstructure of laser surface alloying hardened H13 steel using SKH51 powder. Materials & Design, 95, 173–182. doi: 10.1016/j.matdes.2016.01.079
  4. Rakhimyanov, K. M., Nikitin, Y. V., Semenova, Y. S., Eremina, A. S. (2016). Residual Stress, Structure and Other Properties Formation by Combined Thermo-Hardening Processing of Surface Layer of Gray Cast Iron Parts. IOP Conference Series: Materials Science and Engineering, 126, 012019. doi: 10.1088/1757-899x/126/1/012019
  5. Mencik, J. (1996). Mechanics of components with treated or coated surfaces. Vol. 42. Solid Mechanics and Its Applications. – Springer Science & Business Media, 366. doi: 10.1007/978-94-015-8690-0
  6. Belkin, P. N., Kusmanov, S. A. (2016). Plasma electrolytic hardening of steels: Review. Surface Engineering and Applied Electrochemistry, 52 (6), 531–546. doi: 10.3103/s106837551606003x
  7. Kostyk, K. (2016). Development of innovative method of steel surface hardening by a combined chemical-thermal treatment. EUREKA: Physics and Engineering, 6, 46–52. doi: 10.21303/2461-4262.2016.00220
  8. Dhafer, W. A.-R., Kostyk, V., Kostyk, K., Glotka, A., Chechel, M. (2016). The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European Journal of Enterprise Technologies, 3 (5 (81)), 44–50. doi: 10.15587/1729-4061.2016.69809
  9. Yilbas, B. S., Toor, I., Karatas, C., Malik, J., Ovali, I. (2015). Laser treatment of dual matrix structured cast iron surface: Corrosion resistance of surface. Optics and Lasers in Engineering, 64, 17–22. doi: 10.1016/j.optlaseng.2014.07.008
  10. Fadhil, I. A., Kostyk, K., Akimov, O. (2016). The innovative technology of high-speed nitriding steel. Bulletin of the National Technical University «KhPI» Series: New Solutions in Modern Technologies, 42 (1214), 49–53. doi: 10.20998/2413-4295.2016.42.08
  11. Kostyk, K. (2015). Surface hardening of tool from steel 38Cr2MoAl complex chemical-heat treatment.Bulletin of the National Technical University «KhPI» Series: New Solutions in Modern Technologies, 39 (1148), 26–33.
  12. Mohanad, M. K., Kostyk, V., Demin, D., Kostyk, K. (2016). Modeling of the case depth and surface hardness of steel during ion nitriding. Eastern-European Journal of Enterprise Technologies, 2 (5 (80)), 45–49. doi: 10.15587/1729-4061.2016.65454
  13. Zvezdin, V. V., Spirin, A. A., Saubanov, R. R., Zvezdina, N. M., Fayruzova, A. R. (2016). Ion-plasma nitriding of machines and tools parts instrumental steels. Journal of Physics: Conference Series, 669, 012067. doi: 10.1088/1742-6596/669/1/012067
  14. Campos-Silva, I., Ortiz-Dominguez, M., Elias-Espinosa, M., Vega-Moron, R. C., Bravo-Barcenas, D., Figueroa-Lopez, U. (2015). The Powder-Pack Nitriding Process: Growth Kinetics of Nitride Layers on Pure Iron. Journal of Materials Engineering and Performance, 24 (9), 3241–3250. doi: 10.1007/s11665-015-1642-7
  15. Panfil, D., Kulka, M., Wach, P., Michalski, J., Przestacki, D. (2017). Nanomechanical properties of iron nitrides produced on 42CrMo4 steel by controlled gas nitriding and laser heat treatment. Journal of Alloys and Compounds, 706, 63–75. doi: 10.1016/j.jallcom.2017.02.220
  16. Kulka, M., Panfil, D., Michalski, J., Wach, P. (2016). The effects of laser surface modification on the microstructure and properties of gas-nitrided 42CrMo4 steel. Optics & Laser Technology, 82, 203–219. doi: 10.1016/j.optlastec.2016.02.021
  17. Idan, A. F. І., Akimov, O., Golovko, L., Goncharuk, O., Kostyk, K. (2016). The study of the influence of laser hardening conditions on the change in properties of steels. Eastern-European Journal of Enterprise Technologies, 2 (5 (80)), 69–73. doi: 10.15587/1729-4061.2016.65455
  18. Kostyk, K. (2015). Development of the high-speed boriding technology of alloy steel. Eastern-European Journal of Enterprise Technologies, 6 (11 (78)), 8–15. doi: 10.15587/1729-4061.2015.55015
  19. Demin, D. (2017). Strength analysis of lamellar graphite cast iron in the «carbon (C) – carbon equivalent (CEQ)» factor space in the range of C = (3,425–3,563) % and CEQ = (4,214–4,372) %. Technology audit and production reserves, 1 (1 (33)), 24–32. doi: 10.15587/2312-8372.2017.93178
  20. Demin, D. (2013). Adaptive modeling in problems of optimal control search termovremennoy cast iron. Eastern-European Journal of Enterprise Technologies, 6 (4 (66)), 31–37. Available at: http://journals.uran.ua/eejet/article/view/19453/17110
  21. Kuryn, M. G. (2012). Synthesis of cold-hardening mixtures with given set of properties and optimization of technological regimes of their manufacturing. Technology audit and production reserves, 1 (1 (3)), 25–29. doi: 10.15587/2312-8372.2012.4872
  22. Dymko, E. P., Marinenko, D. V., Borisenko, S. V., Kravcova, N. V. (2016). Selection of criteria for interchangeability verification of special alloys on the example of nimonic. ScienceRise, 6 (2 (23)), 27–30. doi: 10.15587/2313-8416.2016.70356

Downloads

Published

2017-04-26

How to Cite

Idan A. F. І., Akimov, O., & Kostyk, K. (2017). Development of a combined technology for hardening the surface layer of steel 38Cr2MoAl. Eastern-European Journal of Enterprise Technologies, 2(11 (86), 56–62. https://doi.org/10.15587/1729-4061.2017.100014

Issue

Section

Materials Science