Research into regularities of pore formation on the surface of semiconductors

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.104039

Keywords:

quality of nanostructures, electrochemical etching, porous semiconductors, Helmholtz layer, morphology, semiconductors

Abstract

A general procedure is devised to control the process of formation of porous layers on semiconductor surfaces by the method of electrochemical etching. When controlling the process of pore formation on the surface of crystal, it is necessary to consider: conditions of pore formation, requirements that are put forward to quality of the obtained nanostructures, and mechanisms that underlie the process of pore formation. It is shown that the built scheme could be used for different cases of the synthesis of nanostructured semiconductors. We investigated the processes that underlie pore formation and define morphological properties of nanostructures. A thermodynamic analysis of processes at the boundary of contact "semiconductor–electrolyte" was performed. We examined a relative drop in potential in the Helmholtz layer, which is an important characteristic of the process of pore formation on the surface of crystal. Main morphological criteria are selected of quality of porous nanostructures for their application in solar batteries. These include diameter and depth of the pore, a degree of porosity of the surface of a nanostructured crystal. Taking into account these criteria, we received porous spaces on the surface of semiconductors A3V5 that could be used for solar cells. We determined the value of boundary voltage of the early pore formation for semiconductors of group A3V5 during etching in the electrolyte HF:C2H5OН:H2O=1:2:1 for 15 min. It was established that at chosen conditions of etching. the largest capacity to pore formation is displayed by crystals of indium phosphide. The results obtained demonstrate that at the same conditions of etching semiconductors possess different ability to form pores

Author Biographies

Sergey Vambol, National University Of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor, Head of Department

Department of Applied Mechanics

Ihor Bogdanov, Berdyansk State Pedagogical University Schmidta str., 4, Berdyansk, Ukraine, 71100

Doctor of Pedagogical Sciences, Professor, Rector

Viola Vambol, National University Of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Associate Professor

Department of Labour Protection and Technogenic and Ecological Safety

Yana Suchikova, Berdyansk State Pedagogical University Schmidta str., 4, Berdyansk, Zaporizhia region, Ukraine, 71100

PhD, Associate Professor

Department of Vocational Education

Olexandr Kondratenko, National University Of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Applied Mechanics

Olga Hurenko, Berdyansk State Pedagogical University Schmidta str., 4, Berdyansk, Zaporizhia region, Ukraine, 71100

Doctor of Pedagogical Sciences, Associate Professor, First Vice-Rector

Sergey Onishchenko, Berdyansk State Pedagogical University Schmidta str., 4, Berdyansk, Zaporizhia region, Ukraine, 71100

Assistant

Department of Professional Education

References

  1. Huang, Y. M., Ma, Q. L., Meng, M., Zhai, B. G. (2010). Porous Silicon Based Solar Cells. Materials Science Forum, 663-665, 836–839. doi: 10.4028/www.scientific.net/msf.663-665.836
  2. Salman, K. A., Omar, K., Hassan, Z. (2011). The effect of etching time of porous silicon on solar cell performance. Superlattices and Microstructures, 50 (6), 647–658. doi: 10.1016/j.spmi.2011.09.006
  3. Dubey, R. S. (2013). Electrochemical Fabrication of Porous Silicon Structures for Solar Cells. Nanoscience and Nanoengineering, 1 (1), 36–40.
  4. Khrypunov, G., Vambol, S., Deyneko, N., Sychikova, Y. (2016). Increasing the efficiency of film solar cells based on cadmium telluride. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 12–18. doi: 10.15587/1729-4061.2016.85617
  5. Suchikova, Y. (2016). Provision of environmental safety through the use of porous semiconductors for solar energy sector. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 26–33. doi: 10.15587/1729-4061.2016.85848
  6. Bremus-Koebberling, E. A., Beckemper, S., Koch, B., Gillner, A. (2012). Nano structures via laser interference patterning for guided cell growth of neuronal cells. Journal of Laser Applications, 24 (4), 042013. doi: 10.2351/1.4730804
  7. Beckemper, S. (2011). Generation of Periodic Micro- and Nano-structures by Parameter-Controlled Three-beam Laser Interference Technique. Journal of Laser Micro/Nanoengineering, 6 (1), 49–53. doi: 10.2961/jlmn.2011.01.0011
  8. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2011). Influence of dislocations on the process of pore formation in n-InP (111) single crystals. Semiconductors, 45 (1), 121–124. doi: 10.1134/s1063782611010192
  9. Dzhafarov, T. (2013). Silicon Solar Cells with Nanoporous Silicon Layer. Solar Cells – Research and Application Perspectives. doi: 10.5772/51593
  10. Heidari, M., Yan, J. (2017). Ultraprecision surface flattening of porous silicon by diamond turning. Precision Engineering, 49, 262–277. doi: 10.1016/j.precisioneng.2017.02.015
  11. Hooda, S., Khan, S. A., Satpati, B., Uedono, A., Sellaiyan, S., Asokan, K. et. al. (2016). Nanopores formation and shape evolution in Ge during intense ionizing irradiation. Microporous and Mesoporous Materials, 225, 323–330. doi: 10.1016/j.micromeso.2016.01.006
  12. Chen, F., Xu, L., Fang, D., Tang, J., Wang, H., Fan, J. et. al. (2015). Defect related photoluminescence emission from etched GaAs microstructure introduced by electrochemical deposition. 2015 International Conference on Optoelectronics and Microelectronics (ICOM). doi: 10.1109/icoom.2015.7398848
  13. Md Taib, M. I., Zainal, N., Hassan, Z. (2014). Improvement of Porous GaAs (100) Structure through Electrochemical Etching Based on DMF Solution. Journal of Nanomaterials, 2014, 1–7. doi: 10.1155/2014/294385
  14. Tiginyanu, I., Monaico, E., Sergentu, V., Tiron, A., Ursaki, V. (2014). Metallized Porous GaP Templates for Electronic and Photonic Applications. ECS Journal of Solid State Science and Technology, 4 (3), P57–P62. doi: 10.1149/2.0011503jss
  15. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Influence of the Carrier Concentration of Indium Phosphide on the Porous Layer Formation. Journal of Nano- and Electronic Physics, 2 (4), 142–147.
  16. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Preparation of nanoporous n-InP(100) layers by electrochemical etching in HCI solution. Functional Materials, 17 (1), 131–134.
  17. Sato, T., Kumazaki, Y., Kida, H., Watanabe, A., Yatabe, Z., Matsuda, S. (2015). Large photocurrents in GaN porous structures with a redshift of the photoabsorption edge. Semiconductor Science and Technology, 31 (1), 014012. doi: 10.1088/0268-1242/31/1/014012
  18. Monaico, E., Tiginyanu, I., Volciuc, O., Mehrtens, T., Rosenauer, A., Gutowski, J., Nielsch, K. (2014). Formation of InP nanomembranes and nanowires under fast anodic etching of bulk substrates. Electrochemistry Communications, 47, 29–32. doi: 10.1016/j.elecom.2014.07.015
  19. Gerngross, M.-D., Carstensen, J., Foll, H. (2014). Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties. Nanoscale Research Letters, 9 (1), 316. doi: 10.1186/1556-276x-9-316
  20. Zhu, C., Zheng, M., Xiong, Z., Li, H., Shen, W. (2014). Electrochemically etched triangular pore arrays on GaP and their photoelectrochemical properties from water oxidation. International Journal of Hydrogen Energy, 39 (21), 10861–10869. doi: 10.1016/j.ijhydene.2014.05.022
  21. Janovska, M., Sedlak, P., Kruisova, A., Seiner, H., Landa, M., Grym, J. (2015). Elastic constants of nanoporous III-V semiconductors. Journal of Physics D: Applied Physics, 48 (24), 245102. doi: 10.1088/0022-3727/48/24/245102
  22. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2009). Influence of type anion of electrolit on morphology porous inp obtained by electrochemical etching. Journal of Nano- and Electronic Physics, 1 (4), 78–86
  23. Sato, T., Zhang, X., Ito, K., Matsumoto, S., Kumazaki, Y. (2016). Electrochemical formation of N-type GaN and N-type InP porous structures for chemical sensor applications. 2016 IEEE SENSORS. doi: 10.1109/icsens.2016.7808443
  24. Ulin, V. P., Konnikov, S. G. (2007). Nature of Electrochemical Pore Formation Processes in AIIIBV Crystals (Part I). Fiz. Tekh. Poluprovodn, 41 (7), 854–866.
  25. Sychikova, Y. A., Kidalov, V. V., Sukach, G. A. (2013). Dependence of the threshold voltage in indium-phosphide pore formation on the electrolyte composition. Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 7 (4), 626–630. doi: 10.1134/s1027451013030130
  26. Yana, S. (2015). Porous Indium Phosphide: Preparation and Properties. Handbook of Nanoelectrochemistry, 283–305. doi: 10.1007/978-3-319-15266-0_28
  27. Rani, S., Rajalakshmi, N. (2015). Effect of Nanotube Diameter on Photo-Electro-Chemical Properties of Carbon Quantum Dot Functionalized TiO2 Nanotubes. Journal of Clean Energy Technologies, 3 (5), 367–371. doi: 10.7763/jocet.2015.v3.225
  28. Ulin, V. P., Ulin, N. V., Soldatenkov, F. Y. (2017). Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism. Semiconductors, 51 (4), 458–472. doi: 10.1134/s1063782617040212
  29. Sairi, M., Arrigan, D. W. M. (2015). Electrochemical detection of ractopamine at arrays of micro-liquid | liquid interfaces. Talanta, 132, 205–214. doi: 10.1016/j.talanta.2014.08.060
  30. Wloka, J., Mueller, K., Schmuki, P. (2005). Pore Morphology and Self-Organization Effects during Etching of n-Type GaP(100) in Bromide Solutions. Electrochemical and Solid-State Letters, 8 (12), B72. doi: 10.1149/1.2103507
  31. Suchikova, Y. A. (2015). Synthesis of indium nitride epitaxial layers on a substrate of porous indium phosphide. Journal of Nano- and Electronic Physics, 7 (3), 03017-1–03017-3.
  32. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Blue shift of photoluminescence spectrum of porous InP. ECS Transactions, 25 (24), 59–64. doi: 10.1149/1.3316113
  33. Sparvoli, M., Mansano, R. D., Chubaci, J. F. D. (2013). Study of indium nitride and indium oxynitride band gaps. Materials Research, 16 (4), 850–852. doi: 10.1590/s1516-14392013005000063
  34. Vambol, S., Vambol, V., Sychikova, Y., Deyneko, N. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 27–36. doi: 10.15587/1729-4061.2017.85847

Downloads

Published

2017-06-30

How to Cite

Vambol, S., Bogdanov, I., Vambol, V., Suchikova, Y., Kondratenko, O., Hurenko, O., & Onishchenko, S. (2017). Research into regularities of pore formation on the surface of semiconductors. Eastern-European Journal of Enterprise Technologies, 3(5 (87), 37–44. https://doi.org/10.15587/1729-4061.2017.104039

Issue

Section

Applied physics