Research into regularities of pore formation on the surface of semiconductors
DOI:
https://doi.org/10.15587/1729-4061.2017.104039Keywords:
quality of nanostructures, electrochemical etching, porous semiconductors, Helmholtz layer, morphology, semiconductorsAbstract
A general procedure is devised to control the process of formation of porous layers on semiconductor surfaces by the method of electrochemical etching. When controlling the process of pore formation on the surface of crystal, it is necessary to consider: conditions of pore formation, requirements that are put forward to quality of the obtained nanostructures, and mechanisms that underlie the process of pore formation. It is shown that the built scheme could be used for different cases of the synthesis of nanostructured semiconductors. We investigated the processes that underlie pore formation and define morphological properties of nanostructures. A thermodynamic analysis of processes at the boundary of contact "semiconductor–electrolyte" was performed. We examined a relative drop in potential in the Helmholtz layer, which is an important characteristic of the process of pore formation on the surface of crystal. Main morphological criteria are selected of quality of porous nanostructures for their application in solar batteries. These include diameter and depth of the pore, a degree of porosity of the surface of a nanostructured crystal. Taking into account these criteria, we received porous spaces on the surface of semiconductors A3V5 that could be used for solar cells. We determined the value of boundary voltage of the early pore formation for semiconductors of group A3V5 during etching in the electrolyte HF:C2H5OН:H2O=1:2:1 for 15 min. It was established that at chosen conditions of etching. the largest capacity to pore formation is displayed by crystals of indium phosphide. The results obtained demonstrate that at the same conditions of etching semiconductors possess different ability to form poresReferences
- Huang, Y. M., Ma, Q. L., Meng, M., Zhai, B. G. (2010). Porous Silicon Based Solar Cells. Materials Science Forum, 663-665, 836–839. doi: 10.4028/www.scientific.net/msf.663-665.836
- Salman, K. A., Omar, K., Hassan, Z. (2011). The effect of etching time of porous silicon on solar cell performance. Superlattices and Microstructures, 50 (6), 647–658. doi: 10.1016/j.spmi.2011.09.006
- Dubey, R. S. (2013). Electrochemical Fabrication of Porous Silicon Structures for Solar Cells. Nanoscience and Nanoengineering, 1 (1), 36–40.
- Khrypunov, G., Vambol, S., Deyneko, N., Sychikova, Y. (2016). Increasing the efficiency of film solar cells based on cadmium telluride. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 12–18. doi: 10.15587/1729-4061.2016.85617
- Suchikova, Y. (2016). Provision of environmental safety through the use of porous semiconductors for solar energy sector. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 26–33. doi: 10.15587/1729-4061.2016.85848
- Bremus-Koebberling, E. A., Beckemper, S., Koch, B., Gillner, A. (2012). Nano structures via laser interference patterning for guided cell growth of neuronal cells. Journal of Laser Applications, 24 (4), 042013. doi: 10.2351/1.4730804
- Beckemper, S. (2011). Generation of Periodic Micro- and Nano-structures by Parameter-Controlled Three-beam Laser Interference Technique. Journal of Laser Micro/Nanoengineering, 6 (1), 49–53. doi: 10.2961/jlmn.2011.01.0011
- Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2011). Influence of dislocations on the process of pore formation in n-InP (111) single crystals. Semiconductors, 45 (1), 121–124. doi: 10.1134/s1063782611010192
- Dzhafarov, T. (2013). Silicon Solar Cells with Nanoporous Silicon Layer. Solar Cells – Research and Application Perspectives. doi: 10.5772/51593
- Heidari, M., Yan, J. (2017). Ultraprecision surface flattening of porous silicon by diamond turning. Precision Engineering, 49, 262–277. doi: 10.1016/j.precisioneng.2017.02.015
- Hooda, S., Khan, S. A., Satpati, B., Uedono, A., Sellaiyan, S., Asokan, K. et. al. (2016). Nanopores formation and shape evolution in Ge during intense ionizing irradiation. Microporous and Mesoporous Materials, 225, 323–330. doi: 10.1016/j.micromeso.2016.01.006
- Chen, F., Xu, L., Fang, D., Tang, J., Wang, H., Fan, J. et. al. (2015). Defect related photoluminescence emission from etched GaAs microstructure introduced by electrochemical deposition. 2015 International Conference on Optoelectronics and Microelectronics (ICOM). doi: 10.1109/icoom.2015.7398848
- Md Taib, M. I., Zainal, N., Hassan, Z. (2014). Improvement of Porous GaAs (100) Structure through Electrochemical Etching Based on DMF Solution. Journal of Nanomaterials, 2014, 1–7. doi: 10.1155/2014/294385
- Tiginyanu, I., Monaico, E., Sergentu, V., Tiron, A., Ursaki, V. (2014). Metallized Porous GaP Templates for Electronic and Photonic Applications. ECS Journal of Solid State Science and Technology, 4 (3), P57–P62. doi: 10.1149/2.0011503jss
- Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Influence of the Carrier Concentration of Indium Phosphide on the Porous Layer Formation. Journal of Nano- and Electronic Physics, 2 (4), 142–147.
- Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Preparation of nanoporous n-InP(100) layers by electrochemical etching in HCI solution. Functional Materials, 17 (1), 131–134.
- Sato, T., Kumazaki, Y., Kida, H., Watanabe, A., Yatabe, Z., Matsuda, S. (2015). Large photocurrents in GaN porous structures with a redshift of the photoabsorption edge. Semiconductor Science and Technology, 31 (1), 014012. doi: 10.1088/0268-1242/31/1/014012
- Monaico, E., Tiginyanu, I., Volciuc, O., Mehrtens, T., Rosenauer, A., Gutowski, J., Nielsch, K. (2014). Formation of InP nanomembranes and nanowires under fast anodic etching of bulk substrates. Electrochemistry Communications, 47, 29–32. doi: 10.1016/j.elecom.2014.07.015
- Gerngross, M.-D., Carstensen, J., Foll, H. (2014). Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties. Nanoscale Research Letters, 9 (1), 316. doi: 10.1186/1556-276x-9-316
- Zhu, C., Zheng, M., Xiong, Z., Li, H., Shen, W. (2014). Electrochemically etched triangular pore arrays on GaP and their photoelectrochemical properties from water oxidation. International Journal of Hydrogen Energy, 39 (21), 10861–10869. doi: 10.1016/j.ijhydene.2014.05.022
- Janovska, M., Sedlak, P., Kruisova, A., Seiner, H., Landa, M., Grym, J. (2015). Elastic constants of nanoporous III-V semiconductors. Journal of Physics D: Applied Physics, 48 (24), 245102. doi: 10.1088/0022-3727/48/24/245102
- Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2009). Influence of type anion of electrolit on morphology porous inp obtained by electrochemical etching. Journal of Nano- and Electronic Physics, 1 (4), 78–86
- Sato, T., Zhang, X., Ito, K., Matsumoto, S., Kumazaki, Y. (2016). Electrochemical formation of N-type GaN and N-type InP porous structures for chemical sensor applications. 2016 IEEE SENSORS. doi: 10.1109/icsens.2016.7808443
- Ulin, V. P., Konnikov, S. G. (2007). Nature of Electrochemical Pore Formation Processes in AIIIBV Crystals (Part I). Fiz. Tekh. Poluprovodn, 41 (7), 854–866.
- Sychikova, Y. A., Kidalov, V. V., Sukach, G. A. (2013). Dependence of the threshold voltage in indium-phosphide pore formation on the electrolyte composition. Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 7 (4), 626–630. doi: 10.1134/s1027451013030130
- Yana, S. (2015). Porous Indium Phosphide: Preparation and Properties. Handbook of Nanoelectrochemistry, 283–305. doi: 10.1007/978-3-319-15266-0_28
- Rani, S., Rajalakshmi, N. (2015). Effect of Nanotube Diameter on Photo-Electro-Chemical Properties of Carbon Quantum Dot Functionalized TiO2 Nanotubes. Journal of Clean Energy Technologies, 3 (5), 367–371. doi: 10.7763/jocet.2015.v3.225
- Ulin, V. P., Ulin, N. V., Soldatenkov, F. Y. (2017). Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism. Semiconductors, 51 (4), 458–472. doi: 10.1134/s1063782617040212
- Sairi, M., Arrigan, D. W. M. (2015). Electrochemical detection of ractopamine at arrays of micro-liquid | liquid interfaces. Talanta, 132, 205–214. doi: 10.1016/j.talanta.2014.08.060
- Wloka, J., Mueller, K., Schmuki, P. (2005). Pore Morphology and Self-Organization Effects during Etching of n-Type GaP(100) in Bromide Solutions. Electrochemical and Solid-State Letters, 8 (12), B72. doi: 10.1149/1.2103507
- Suchikova, Y. A. (2015). Synthesis of indium nitride epitaxial layers on a substrate of porous indium phosphide. Journal of Nano- and Electronic Physics, 7 (3), 03017-1–03017-3.
- Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Blue shift of photoluminescence spectrum of porous InP. ECS Transactions, 25 (24), 59–64. doi: 10.1149/1.3316113
- Sparvoli, M., Mansano, R. D., Chubaci, J. F. D. (2013). Study of indium nitride and indium oxynitride band gaps. Materials Research, 16 (4), 850–852. doi: 10.1590/s1516-14392013005000063
- Vambol, S., Vambol, V., Sychikova, Y., Deyneko, N. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 27–36. doi: 10.15587/1729-4061.2017.85847
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Sergey Vambol, Ihor Bogdanov, Viola Vambol, Yana Suchikova, Olexandr Kondratenko, Olga Hurenko, Sergey Onishchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.